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TWO REMARKS ON THE KHINTCHINE-KAHANE INEQUALITY
BY

B. TOMASZEWSKI (WARSZAWA)

Let (X, |)) be a normed space and let ¢,..., &, be a Bernoulli
sequence of indepéndent random variables defined on the probability
space (2,M,P) (i.e. P(e; =1) =P(e; = —1) =% for i =1,...,2n).
The Khintchine-Kahane inequality states that for every p,, p, > 0 there

exists a constant C, , such that, for any ¢, €X (¢ =1,..., n),

(1) Cp, .0, (Qf”é:si%lmdP)l/pl > (gf”é%ai szdP)llpz.

Recently, a new proof of inequality (1) was given by C. Borell (see [3]).
In this paper we consider only the case p, = 1, p, = 2 of the Khintchine-
Kahane inequality. We shall prove it in a simple way with C,, = V3.
This constant is, as far as we know, the best known by now. It is still an
open problem what is the best constant C, ,. In a special case, where the
space X is a real line, this problem was solved by Szarek [4] and later
by Haagerup [1]. The best constant found by them is equal to V 2. In the
second part of the paper we shall give some strengthening of the Khin-
tchine-Kahane inequality.

I am grateful to S. J. Szarek for his helpful remarks during the
preparation of this paper.

THEOREM 1 (cf. Kahane [2]). For every nmormed space (X, |-|l) and
for arbitrary elements a,, ..., a, of X the inequality

@ /8 [|| 3 a2 ([ 3 e a2)”

holds.
Proof. Given a;e X (for ¢ =1,...,n) and FE<c 8 ={1,...,n}
we put

’ ’ ~
Ne = 2%“;7 g = 28{+nai7 Ns =My Mg =N, & = E&ipny
1€l i€k
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and

Qp ={we R2: §(w) =1 for : € E and &(w) = —1 for ¢ ¢ E}

= {we 2: g(w) = g, ,(w) for i e B and g(w) = —e,(w) for ¢ ¢ E}.

First we prove that

+ 14

3) f ‘ n+1
2

2
Indeed, we have

(4) ]
Q

Now observe that the variables e, ..., ¢,, &, ..., &, are independent,
and hence the variables |lngll, lns\ zll, and Xog (depending on disjoint
blocks of &,...,&,, &, ..., &) are also independent. Therefore

(5) [ gl Ing< gl 8P = [ xaglngll lng zldP
‘QE 2

2

’ ok ” dP<(bfllnlldP)z.

"’“;" “ H”‘Z” “ aP = D' [ gl lns\l2P.

EcS Qg

= P(2g) [ InglldP [ lns, gldP.
2 Q2

Since the variables 7z —17g.x and 7 = ng+ngz have the same
distribution, we obtain

1
© [ WneldP < 5 [ U+ s el + g — ngnl1dP
0 2

1 1
— = [ s+ 15 £l dP+ 5 [ Ing— s\ slaP = [ miap.
2 Q Q

In the same manner we prove that

(7) [ lnszldP < [ Il aP.
2 Q

Combining (4)-(7) and the fact that P(2z) = 1/2" for every E < §,
we get (3).
On the other hand, by the triangle inequality we have

' o ! 1
(8) 2“ G H“ e |>2[M2_"’7_"] = < Ul -+ 1)+ Il 1.
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Integrating both sides of inequality (8) and applying inequality (3)
we obtain the assertion of Theorem 1.

THEOREM 2. Let n > 2. For k< n let us put

.Q"={we!):2” | =k}.

{=1
Then there exists a constant A (independent of n, k, the space X, and the
ohoice of ;e X (¢ =1,...,n)) such that

gi(w) — &, (w)
2

A , .
@) S Tr) ofk Il 142 > ! It ap.

In other words: the mean value of the product |n|| |In'|l over all systems
of signs [&y, ..., &,] such that the sequence [e,, ..., ¢e,] differs from the se-
quence [e,.1, ..., &,] exactly at & places is comparable with [ ||n|*dP.

Q2

Remarks. 1. Multiplying the inequality (9) by P(£*) and summing
over k, 0 < k < », we get the Khintchine-Kahane inequality (1) for p, = 1,
P =2 with C,, = A.

2. The assertion of Theorem 2 fails to be true in the case n = 2.
Take, e.g., a; = a; # 0 and &k = 1.

Proof of Theorem 2. Let # be the family of all subsets of 8
having exactly k elements. Since

Q= U Qg,
Eew
we have
(10) [l 1@ = 3" [ linll Iy’ @P.
ok Eew Qp

Since %' (w) = ng(w) —ns g(w) for we 2, we get, similarly as in
the proof of (5),

1
(11) [ wrnwmnar = oz [ il g —ns NP
Qp Q2

Let R denote the set of all permutations of the set 8. Choose an
arbitrary set F € #°, o € R, and apply the above equality with £ = o(F).
Then we have

1
(12) [ 1 1P = 2 [ Wl Moy —eisml 2P
DU(F) Q
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. . Averaging (12) over.all g€ R wo ‘get

19 L5 [ it = 225 [ ok b~ sl

oeR -Qa(F) oeR 0

Now obserye that 'for each’ E e #+we. have. B = o(F) exactly for
k!(n—k)! ermutatlons o € R.-Therefore, by (10) bnd the fact that

She ey s P(.Qk = (’,}) %—n

we can write (13) 1n the form

(14) Qk) f il 1P =—2 f i ||770(F) Tusamll 4P

l ) ‘oeR 2 -
i,

Of course, 11: is enough to prove the assertlen of Theorem 2for k < [n/2].
To do- this, we -need- the inequalities . - A

) _); ,,f o s s 4P > 2 f iFdP - 5 f I!‘nll I 14,
and 1 a
1 -1
1) g f Il P > 2 f ol ool 4P

oeR .
for k< [n/2] and B = {1, ..., k}.

Thus, to complete the proof it is enough to show (15) and (16). The
inequality (15) follows from the obvious formulas

1 o 4
A1) == [ il == ocey + sl PP S o [ ol sl 8P
ceR 2 geR Q
and

1
a8) 7 ) [ Ul == s PGP

geR Q2

—2 f InlFap+ f I+l —

aeR Q

- 752 f gl | = oy +Naisn | GP

oeR Q

=2 | Inl*dP — | gl I’ | &P
[tz |
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by’ (14) -and the equa.llty | .,‘. .
f" —NoE) +"7o(S\E)” dP f|l"7|l2dP .

.
which ‘holds for every ¢ e R o : .
Now let us prove (16) First we show the followmg fact:

if 1<k, then

(19) P(Q,,) f Il 1B > % [ e Vo1,

where F = {1, ..., 21}. : ;
Taking the set F = {1,...,1,21+1,...,k+1} and successively
= {l, ..., k+1} in equality (14), summmg the obtained equalltles, and

applymg the triangle inequality, we get

@) o f Il Iy 4P > ——Z f Il Wrogoncem) —Toall P

¢ oeR

where G = {k+1+1,...,n},
Let us note that, for an arbitrary system:of signs (4y, ..., d,) (i.e.
= 41 fors =1, n), the sequence of random variables (61, ceey &)

has the same dlstrlbumon as the sequence (6181, ...y 0,8,). In particular,
given o € R, we can put —¢; instead of g; for i e a(S\E) in the right-hand

side of inequality (20), obtaining

e) g f Il 1182 > = 3 [ g~z Moo oen o8P

aeR e}

Summing (20) and (21) and usmg the triangle inequality we get

22 3 Q,,) f Il &P > _,EZR: nf Il (s @ven —ael4P-
Finally, changmg g; for —¢;fori e o(G) we obtain (19). This proves (16)

an even k. _ .
for Now, let us consider the remaining case k = 2l—1. Putting —s,,

instead of ¢, in the right-hand side of (19), adding the obtained inequality
to (19), and applying the triangle inequality, we get

(23) T Qk) f Il 1102 > = ST [l sz lP,

ceR Q2

where F = {1, ..., k}.
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Let 7; € R be defined for j € S\F by 7;(h) = hfor b # j and b # 21,

7;(21) = j, 7;(j) = 2l. Since R is a group with respect to the composition
of permutations, we have

1 1
@) — D' [ ol Mool =25 D [ Wil Moo mllaP

oeR 2 oeR 2

~

= = ' Mol Wi ~eaptagldF-

oeR Q2

Averaging the right-hand side of equality (24) over j (j = 21, ..., n}
and applying (23) we get

1 ’
Fig | Il riap
ak

1 1 =
Z n! n—-21+1 ZZ[””U(F)" 1Mo ) —Eat)®a() | 6P
j=21l oeR Q
-2 2 f oo Z ety — oty Gucp| 6P
j=2l
1 n—-k-1
> 3 [ Womll Inuismyl 2P
. geR Q

Thus we have proved (16), which completes the proof of Theorem 2.
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