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CLOSED SURFACES IN FOUR-SPACES
WITH NON-VANISHING NORMAL CURVATURE

BY

RAINER WALDEN (PADERBORN)

We investigate surfaces immersed in 4-spaces of constant curvature
by making use of the invariance of the normal curvature ellipse. The
main global results concern minimal immersions with restriction to the
Gauss curvature and nowhere vanishing normal curvature. An example
is the Veronese surface in 8% Furthermore, this is an example for an
“isotropic” surface, which means that the normal curvature ellipse is
a circle. We give sufficient conditions for closed minimal surfaces to be
isotropic. .

We assume that all manifolds and maps considered in this paper
are C°. Let f: M — M(c) be an isometric immersion of a connected
orientable Riemannian 2-manifold (M,g) in a 4-dimensional oriented
Riemannian manifold (M (c), §) with constant curvature c¢. Let TM (re-
spectively, | .M) denote the tangential (respectively, normal) bundle.
D is the covariant derivative in | M, induced by the covariant derivative
in TM. Choose the orientation of | ;M so that the canonical isomorphism
TM® | ;M =TM preserves orientation. a: TM xTM — | ,M is the
second fundamental form. Let (e, e;, €5, ¢,) denote a local adapted ortho-
normal frame field, i.e. e,, ¢, are tangential and e;, ¢, are normal vector
fields.

The normal connection form w satisfies

De; = we, and De, = —we,.
The normal curvature tensor R" is defined by
R"(X,Y)e; =dw(X, Y)e,, X,Yel(TM).
The normal curvature form
dw = G(R (,)es, ¢4

is independent of the choice of e;, ¢;. The normal curvature K, is defined
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by the formula

do+K,w, =0,
where o, is the volume element of M. This gives immediately [K,w, = 0
for closed orientable surfaces with a global nowhere vanishing normal

section.
For the further discussion the local normal vector fields

D = ’l‘(a(en e,) —a(e,, 32)) and ¥ = a(ey, €,)
are important. The curvature ellipse is given by ®cosp + ¥sin g.
A point p e M is called isotropic if ||D|| = ||¥| and §(D, ¥) = 0.
We say that M is isotropic if each point is isotropic. At non-isotropic

points, @ and ¥ determine a tangential cross field. Therefore, on any
compact surface of non-vanishing Euler characteristic there must be an

isotropic point (see [4]).
K, 0 iff @ and ¥ are linear independent. This follows from

LEMMA 1. The volume elements w, of M and @, of M satisfy
K,0,(X, Y) =20,X, Y, D, ¥).
Proof. We have
K,0,(X,Y) = —§(R"(X, Y)e,, 64) = 2 [ﬁ(a(',ez-),eg,),ﬁ(a(', e,.),e,l)](X,Y)

i=1,2

(see, e.g., [6]). For X =e¢, and ¥ = ¢, we get

K, =9(¥,e)j2D, ¢)—g(¥, €)§ (2D, ¢;) = 2wz A wy(D, ¥)
with w; = g(e;, *) and, therefore,

K,0,(X,Y) =20w,(X, Y)ozA w0, (P, ¥) =20,(X, Y, D, V).

We also write K, =20 V.

LEMMA 2. Let M be a closed orientable surface isometrically immersed
in M. If K, # 0, then [K,0, = 8nsign(K,) and M has genus 0.

Proof. We assume the tangential frame e,,e, to have isolated
singularities at p,,...,p, € M only. K, # 0 implies @ # 0 so that we
can choose e¢; = @/||P|. This gives the unique frame field (e,, €,, €3, €,)
defined on M\{p,, ..., p,}. Let U, be a sufficiently small disk in M with

center p,. Then
n

f’ K,,w,,=—fdco=2fw.

M\ UU; i=1 0U;

We evaluate [w suppressing the index ¢ for this local calculation.
8U;
We cover U by a continuous positively-oriented reference frame field
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e,, €. Let ¢ denote the angle from ¢, to ¢, on 0U. We have
e, = €,C08¢ + €,8inp, €, = —&,singp+ €,co8¢,
which implies
® = Bcos2¢+Psin29p, ¥ = —Psin2¢p+ Pcos2p
if we set @ = }(a(2y, &) —a(@, &) and ¥ = a(&y, g5). Let o be the angle
from @ to @. We have

sign(K,) [de =2 [ dp.
aU oUu

This is clearly true with respect to a normal metric g, for which &
and ¥ are orthonormal vectors. The sign on the left depends on the orien-
tation of @, ¥ as seen in Lemma 1.

We set g, = (1—1%)g,+1g,, where g, = g| | ;M is the normal metric,
and denote by g, the angle with respect to the metric g,. Then [ dg, becomes

oU

a continuous function of ¢{. Indeed, this function is constant since the
possible values of the integral are discrete.

Now choose & = @/|P|. Then in U we have the unique frame field
(¢, €5, €, ¢,) and the connection form w = g(Dée,, ¢;). Since w = @+ dp,
we have

fw = f‘a?+2sign(Kn) fd«p.
U oU U

This completes the local calculation.
Poincaré’s theorem (see, e.g., [6], p. 236)

n
2 [ 49 =4n(1—g)
i=109U;

now implies the lemma.

The proof of Lemma 2 shows that the Euler characteristics of tangent
and normal bundle are related by

%(N) = 2sign(K,) z(M).
Little defines in [4] a symmetric tensor field 8 by
g(dX, e;)Ag(dY, ¢) = 8(X, Y)w A w,.

The symmetric tensor field L with L, = &S, — S,¢ has the prop-
erties

trL =0, det(L) =0 implies L =0,

and thus defines a tangential cross field by Lgdu‘du® = 0.
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In the generic case the singularities of L are isolated and are the
same as those of the mean curvature vector H. Little compares the signs
of index (L) and index (H). There is a sign error in his calculations. So he
gets the equations on the Euler characteristics with the opposite sign.
Besides, his method fails on minimal surfaces. As an example we have

the Veronese surface S° (l/g) — 8%1) with K, = §. The immersion is
minimal with area 12=. We know from Calabi [2] that there is no minimal
immersion with less area. In case K, > 0 and Gauss curvature K > —31K,
we always have area 12wn. To prove this we introduce the non-negative
function h: M — R defined by

h=¢+H*-K—-K,.

The function » may be written as h = ||@|*+|P|*—2PA ¥. This
shows that the zeros of h are just the isotropic points of M. Let w,, and
wy dénote the tangential and normal connection forms, respectively.

LEMMA 3. Let M be a closed orientable surface isometrically and mini-
mally. immersed in M with K, > 0. Then Ah = Ah, where

A = 4K+2.Kn + "4 w12+2w34”2 .

Proof. We confine the calculations to a non-isotropic neighbourhood
of a non-isotropic point. The Codazzi equations (Vxa)(Y, Z) =(Vya)(X, Z)
with X =e¢,, Y =Z =e¢, and X =e¢,, Y =Z = ¢, yield, in case of a
minimal immersion,

(1) — Ve, (P)+2015(6) ¥ = V,,(¥)+20y,(6,) P
and
(2) Ve, (P) —2wyz(62) ¥ = V, (¥)+20,5(e4) P,y

respectively. We choose ¢,, e, so that g(®P, ¥) = 0 (this is always possible
and, for example, the case where @ is the major axis of the curvature
ellipse), and then multiply (1) and (2) by @ and ¥, respectively. We get
the following equations:

(3) —1e(IPI°) = (P, Ve, ¥)+ 201, (e) | IF,
(4) ~7(¥, V,,2)+200(e)IPIF = te(IP17),
(5) tea(I197) = §(P, V., P)+201(e)|2IF,
(6) §(¥, 7, @) 205, () 1P = $ea (IP1P).

Evaluations (3)- %[+ (6)- || and (4)- |B|E +(5)- |Z|* give
8wy, (ez)Ki + 6, (KZ) = 4K, (c— K) wy(e,),
Swlz(el)ng - 92(K;) = 4K, (¢ — K)wyy(ey)
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or, for positively-oriented orthonormal vector fields X, X+ and since K, # 0,
we obtain

(7 X(K,)+4K,0,(X")—2(c— K) 04 (X*) = 0.
In the same way, (4), (5) and (3), (6) yield
(8) X(c—EK)+4(c—K) 013(X+) — 2K, 05(X*) = 0.

Computation of the Laplacian of K, and (¢—K) by a further dif-
ferentiation gives

9) AR, 443K, Awy(X, X1)—6EK, +2dE A w0y (X, X1)+2K, =0

and

(10) —AE—44EA 0y,(X, X*)—4K (¢ — K) —2dK, A w3y (X, XL) +
+2K2 = 0,

where 44K A wy,+ 28K, A wy = ||Val’w, (see [7]). This, together with

(48K A 0,3+ 23K, A wy)(6q, €5)
= 4(¢ —K)(2||wyall — || 034])2 +16 (¢ — K) ||yl lwsall —L6 K g( w2, w3q)
and

(48K, A 013+ 28K A wy,) (€4, €,)
= 16 (¢ — K)g(w,s, w;u) — 4K, (2[lwya]l —llwgall)? —16K,, ||| lwsll,

gives Ah = Ah.

THEOREM 1. Let f: M — 8*(1) be a minimal isomelric immersion
of a closed connected orientable 2-dimensional Riemammian manifold with
normal curvature K, > 0 and Gauss curvature K > —3K, . Then the immersion
18 isotropic and M has area 12 .

Proof. Since A > 0 on M, we have h = const by a lemma of E. Hopf.
Indeed, » = 0 since A must be somewhere positive on M. We now in-
tegrate 1 = K +K, and apply Lemma 2.

If M is complete and M = S™(1), n > 2, we know from [1] that if
the immersion is minimal and K > }, then f(M) is either totally geodesic
or f(M) is the Veronese surface in 8*(1). Applying Theorem 1 we get

THEOREM 2. Let f: M — 8*(1) be a minimal isomelric immersion
of a closed commected 2-dimensional Riemammian manifold with normal
curvature K, >0. If K>% or —3K, <K<}, then K =%, K, = %,
and f(M) is the Veronese surface.

Proof. According to Theorem 1 we have

4 = wa,>(<)§fw,, = 4,
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whence K = } and K, = % in which case the immersed manifold is the
Veronese surface (see [1]).

Remark. If K, > 0 is a constant, then K > } and, therefore, f(M)
is the Veronese surface. This result is due to Itoh [3].

Proof. By (9) we have —6KK, +2dK A w, (X, X*)+2K, = 0 and
from (7) we obtain 2K,w,, = (1 —K)w,, so that

oK, K,
dK A O)sg = IT‘K— dK A Wy = m ” |7(1”20J”

and

K
—6KK i 242K, = 0.
K n T 1-K “VG” + n 0

This gives a quadratic equation for K with the solution

K =}(2+V1-|Val’) > }.
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