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1. Introduction. In the recent paper [5], Byczkowski and Pol proved
some closed graph and open mapping theorems for Jech-complete topo-
logical spaces. Their results imply the corresponding ones of Banach
[1] and [2], Klee [11], Weston [19], Brown [3], and Pettis [12]-[14].
They do not imply some sharper results known for completely metrizable
topological vector spaces (Ptdk [16] and [17], A. Robertson and W.
Robertson [18]), locally compact topological groups (Kelley [10]), com-
pletely metrizable topological groups (Kelley [10], Husain [9]), and
Cech-complete topological groups (Brown [4]). All theorems under con-
sideration use the notions of nearly continuity and nearly openness and
appear to be superficially similar. However, their proofs involve various
techniques and sometimes apply deep incidental results.

In this paper we present a unified approach to the subject. It is based
on the notion of A-closed graph, which is stronger than that of closed
graph and weaker than continuity (cf. Section 2). We use a construction
due to Weston [19] and Byczkowski and Pol [6] to prove a A4-closed
graph theorem for Cech-complete topological spaces (Theorem in Sec-
tion 3). Then we derive from it the most general of the mentioned results
(cf. Section 4). Our closed graph (Corollary 4) and open mapping (Corol-
lary 7) theorems for Cech-complete topological groups improve previous
theorems of this kind.

2. Functions with A-clesed graph. Let E be a topological space.
We start with two propositions concerning a convergence-type property
of nets in the product space F x E. The diagonal is denoted by 4,. A set
has diameter less than an open cover % if it is in some member of %.

ProPOSITION 1. Let {(a,, b,)} be a net in E X E. The following conditions
are equivalent:

(i) for any open set W o Ay the points (a, b,) are eveniually in W
(i.e., there is o, such that (a,, b,) € W for all o> o,);
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(ii) for any open cover € of E the seis {a, b,} have eventually diameter
less than €.
Proof. (i) = (ii). Given €, apply (i) to

W=JUxU.
Ue¥

(ii) = (i). Given W, there exists a ¥ such that
UUxUT<cW;

Ue¥¢
apply (i) to €.

If the conditions of Proposition 1 hold, we will write (a, b,) - 4g.

In case F is a regular (= T';) space, (a, b,) - 4 and (a,, b,) — (a, b)
imply (a, b) € 4z. It turns out that the validity of this implication is char-
acteristic for Urysohn spaces. B is said to be a Urysohn space if any
two distinet points a, b € £ can be separated with open sets U,, U; < B
whose closures are disjoint (cf. Engelking [6], Problem 1.7.7).

PROPOSITION 2. The following are equivalent:

(i) B is a Urysohn space;

(ii) for any point (a,d) € (B X E)\Ag there exist disjoint open seis
Wy We< EXE such that (a,b)e W, and Az < Wy,

(iii) (@, b,) > 4 and (a, b,) - (a,d) imply (a,d) € dg.

Proof. (i) = (ii). Put W, = U, X U, and W, = (E x E)\W,; dg< W,
because 4zNW, = A;n (T, xT;) = 0.

(ii) = (i). There are open sets U; = ¥ such that (a,d) e U, x U, = W,;
gince (T, xU)Nndg < W,nW, =0, 0,nT, = 0.

The equivalence of (ii) and (iii) can be proved analogously to the
characterization of Hausdorff spaces as those in which each net has
at most one limit (cf. Engelking [6], Proposition 1.6.7).

Let B, F' be topological spaces, and let f be a function on ¥ to F.

Definition. The function f has a A-closed graph if (a, b,) - Adg
and (f(a,), f(5,)) - (¢, @) imply (¢, @) € 4.

PROPOSITION 3. If f has a A-closed graph, then f has a closed graph.

Proof. a, >a and f(a,) -o¢ imply (¢, f(a)) € 45.

PROPOSITION 4. Suppose F i3 a Urysohn space. If f is continuous,
then f has a A-closed graph.

Proof. Given an open cover € of F,f~!(¥) is an open cover of E.
Hence, in view of Proposition 1, (a, b,) = 4g implies (f(a,), f(b,)) > Ap
which yields the assertion (see Proposition 2, (i) = (iii)).

There are two important classes of — not necessarily continuous —
functions which have A4-closed graph. They will be pointed out in the
successive two propositions.
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A function f is called inversely subcontinuous if any net {a,} < B
has a convergent subnet provided {f(a,)} is convergent (cf. Fuller [8]).
This is a generalization of a function with a compact domain and of a one-
-to-one function onto (= bijection) with a continuous inverse.

LeEMMA. Suppose that

(1) f i8 inversely subcontinuous and has a closed graph.

Then for amy net {(a, b,)} = E X B, which has no cluster points out
of Ag (f(a.), f(b,)) — (6, d) implies (¢, d) € Ap.

Proof. Applying twice the inverse subcontinuity of f we get a subnet
of {(a,, b,)} which converges to a point (a, b) € E X E. By the assumption
on cluster points, (a, b) € 4. Since f has a closed graph, ¢ = f(a) and
d = f(b). Hence ¢ = d.

PrOPOSITION 5. Suppose E is a Urysohn space. If f satisfies (1),
then f has a A-closed graph.

Proof. If (a, b,) > 4z, the same property has any of its subnets;
by Proposition 2, (i) = (iii), the net has no cluster points out of 4;. The
assertion follows from the Lemma.

PROPOSITION 6. Suppose that E, F are topological groups and f is
a homomorphism. Then f has a closed graph (if and) only if it has a A-closed
graph.

Proof. (a,d,) >4y yields a,b;' >1g and (f(a.), f(b.) > (¢, d)
yields f(a,b;') — ¢d™'; hence cd~' = f(1z) = 15 (provided f has a closed
graph).

Now we will examine condition (1). Recall that a function is said
to be closed if the image of any closed set is closed. A Tychonoff space
F is Cech-complete if it is a dense G, in a compact Hausdorff (= T,) space;
locally compact spaces and completely metrizable spaces are Cech-com-
plete (cf. Engelking [6], Section 3.9, and Theorem 4.3.26). A Hausdorff
space F' is a k-space if it is an image of a locally compact space under
a quotient mapping; this is so if F is first-countable or Cech-complete
(cf. Engelking [6], Section 3.3, and Theorem 3.9.5).

ProPOSITION 7. Consider the following conditions (B e T,):

(2) f is closed and the counter-image of any point 18 compact.

(3) f has a closed graph and the counter-image of any compact set is
compact.

Then (1) < (2) = (3). If F 18 a k-space, then also (3) = (2).

Proof. (1) = (2) and (1) = (3). Let K < F be compact and {a,}
a net in f~!(K). There is a subnet {a,} such that f(a,) — ¢ € K. Since fis
inversely subcontinuous, there is a subnet {a,.} of {a,} with a,. — a € E.
The graph of f is closed, so that a € f~!(¢) = f~!(K). This shows that
f~'(K) is compact. Similarly it can be proved that f is closed.
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(2) = (1). Let f(a,) ~>ceF.Put A, = {a,: ¢’ > ¢} and B, = A,nf(c)
for all indices o. By (2), f(4,) > f(4,) 2 ¢ and f~!(¢) is compact. It follows
that {B,} is a family of compact sets having the finite intersection prop-
erty; there is a point b in its intersection — b is, by definition, a cluster
point of the net {a,} and b e f~!(¢). This yields both parts of (1).

Finally, let F be a k-space and assume condition (3). Let A < F
be closed and K < F compact. Given ¢ e f(4)N K, choose a net {a,} <
c Anf~!(K) such that f(a,) - ¢. Since Anf~!(K) is compact, there is
a subnet of {a,} which tends to a point b in the set. The graph of f is closed,
so that ¢ = f(b) e f(A)n K. This proves that the intersection of f(A4)
with any compact set K is closed. By Theorem 3.3.18 from Engelking [6],
J(4) is closed.

3. Main result. A set is called nearly open if it is in the interior of
its closure. A function is called nearly continuous (mearly open) if the
counter-image (image) of any open set is nearly open (Ptak [16] and [17]).
" THEOREM. Let E be a topological space, and let F be a Cech-complete
topological space. A mapping f of E to F is continuous if (and only if) f is
nearly continuous and has a A-closed graph.

Proof. Let the letter @G stand for open sets in F. Since F is a regular
space and f (@) < Intf~'(Q) = f~'(G), it is sufficient to prove that
U@ < fY(G). Put ¥V, = @G and W, = F\@ and assume, to get a contra-
diction, that f~'(V,)nf~}(W,) # 0.

Let {¥,} be a sequence of open covers of F' such that any net
{¢,: 0 € 2} = F has a convergent subnet provided for each n the family
{{c,,,: ¢’ >0}: 6eZ} contains sets of diameter less than €,,. (Such a sequence
of open covers of F exists by a variant of Theorem 3.9.2 from Engelking
{6] due to Frolik [7].) Following the proof of Theorem of Byczkowski
and Pol [56] we can construct sequences {V,} and {W,} of open subsets
of F such that

(@) Vpyu = Vy and Wy« Wy n =0,1,2,...;

(B) 7V, and W, have diameter less than €,,n e N;

() UV INfH(W,) # 0, neN.

By (y), there exist nets {a;: v € T,} = f~!(V,) and elements b, € f~*(W,))
such that a, - b,. Consider the product index set

r=nwx][]r,
ieN
(0o iff n<»n' and »(t) <+ (¢) for all ¢ e N, where ¢ = (n,») and
¢’ = (n'y»')) and the corresponding product net

{8y b,): 0 €2} c EXE
(a, = a™ and b, = b, for o = (n,r) e 2).
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Notice that if U, < F are open sets with b, € U,, then there is an

index
Yo € ” T i
{eN

such that a;™ e U, for all n € N and » > »,. The fact has two consequences.
Firstly, (a,, b,) = 4g. Secondly, the net {(a,, b,)} has no cluster points out
of A, provided F is a Hausdorff space (this will be used in Corollary 1).
Since f(a!™)e V,, («) and (B) imply that the net {jf(a,)} has a subnet
which converges to an element of V,. We have even more: any subnet
of {f(a,)} has a subnet which converges to an element of V,. The same
holds for {f(,)} and W,. Hence there exists a subnet {(a,., b..)} of {(a,, b,)}
such that (f(a,), f(b,) — (¢, d) € Vo X W,. Clearly, (a,,b,) - 4. By the
assumption that f has a 4-closed graph, (¢, d) € 4. This gives a contradic-
tion: ¢ =de Von Wy = GN(F\G) = 0.

4. Consequences. A mapping f of F to F is called perfect if E is a
Hausdorff space and f is continuous and satisfies condition (2) (cf. Engelk-
ing [6], Section 3.7).

CoroLLARY 1 (cf. Byczkowski and Pol [6], Theorem and Corollary).
Let E be a Hausdorff topological space, and let F be a Cech-complete topological
space. A mapping f of E to F is perfect if (and only if) f i8 nearly continuous
and_satisfies condition (2) (equivalently, (1) or (3)).

Proof. If F is a Urysohn space, the assertion follows immedia?eul;’
from the Theorem and Propositions 5 and 7. If E is a Hausdorff space,
we must apply the Lemma — instead of the assumption that f has '_a.
4d-closed graph — in the final part of the proof of the Theorem.

CoROLLARY 2 ([6]). Let E and F be as in Corollary 1. An open bijection
f of B onto F is continuous if (and only if) f is mearly continuous.

COROLLARY 3 ([6]). Let E and F be Cech-complete topological spaces.

A mapping f of E to F is continuous if (and only if) f is nearly continuous
and has a closed graph.

Proof. The graph G(f) < ExF is Cech-complete in its relative
product topology (cf. Engelking [6], Theorems 3.9.8 and 3.9.6). The
induced mapping ¢ of E onto G(f), defined by ¢(z) = (, f(«)), fulfills
the assumptions of Corollary 2. Hence ¢ and f are continuous.

The next corollary, which is a consequence of the Theorem and
Proposition 6, extends the corresponding result of Kelley [10] (Prob-
lem 6.R: for F completely metrizable left-complete, and for F locally
compact).

COROLLARY 4. Let E be a topological group, and let F be a Cech-complete
topological group. A homomorphism f from E to F is continuous if (and only
if) f 18 mearly continuous and has a closed graph.
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Now we pass on to open mapping theorems. Corollary 2 yields

COROLLARY 5 ([b]). Let E be a Hausdorff topological space, and let
F be a Cech-complete topological space. A continuous bijection g of F onto
E is open if (and only if) g is nearly open.

Corollary 3 yields

COROLLARY 6 ([6]). Let F and F be Cech-complete topological spaces.
A bijection g of F onto E is open if (and only if) g 18 nearly open and has
a closed graph.

Corollaries 5 and 6 are not true for mappings which are not one-to-one;
Byczkowski and Pol [5] gave an example of a continuous nearly open
surjection g: F' — F which is not open, where ¥ is separable and completely
metrizable and ¥ is the unit interval. We are only able to replace the
assumptions that ¢ be an injection with the assumption that the quotient
space F'/R(g) be Cech-complete and the quotient map g¢: F»}F /R(g) be
open (where the equivalence relation R(g) is the set of all pairs (a, b)) € F X F
for which g(a) = g(b)). Our final result shows that, for homomorphisms
between topological groups, the situation is much better.

COROLLARY 7. Let B be a topological group, and let F be a Cech-complete
topological group. A homomorphism g from F to E, with a closed kernel,
is open if and only if g is nearly open and has a closed graph.

Proof. The kernel Kerg is an invariant subgroup of ¥, and the
image E, = g(F') is a subgroup of H. Consider the quotient topological
group F, = F[Kerg, the canonical quotient mapping ¢: F — F,, and
the induced mapping g,: F, - E. As well known, ¢q is a continuous open
homomorphism and g, is a monomorphism.

Necessity. Assume g is open. Then ¥, is open and closed, g, is open,
g0': By - F, continuous. Let Fay, >y ecF and g(y,) -« e BH. Then

x € By, 4(y,) > q(y), and ¢(y,) = g5 (9(y,)) > 95 ' (). Hence z = g,(q(y))
= g(y). Thus g has a closed graph.

Sufficiency. Assume g is nearly open and has a closed graph. (The
last assumption yields that Kerg is closed.) By Brown [4] (Theorem 2
and Corollary 3 to Theorem 1), F, is Cech-complete and complete in its
two-sided uniformity. Since g is nearly open and ¢ continuous, g;’ is
nearly continuous. Since g has a closed graph and ¢ is open, one can prove
that g;! has a closed graph. By Corollary 4, g;' is continuous. Thus g,
is open when considered as a map to E,; g = g,0¢q is open as a map
to E,. Now, it is sufficient to prove that F, is open in E. Since E, = g(F)
is nearly open in E, it is sufficient to verify that FE, is closed in F. Let
E,3 2,z e B. The net {g;'(z,)} is fundamental in F, with its two-sided

uniformity, because g;! is a continuous isomorphism. Let g5 ' (z,) — ¥, € F,.



CLOSED GRAPH AND OPEN MAPPING THEOREMS 393

Since g, has a closed graph (as a subset of F, x E), x = ¢,(y,) € E,. This
completes the proof.

Corollary 7 contains the corresponding results of Kelley [10] (Problem

6.R: for ' completely metrizable left-complete, and for F locally compact)
and Brown [4] (Theorem 4: for g continuous). It shows, in particular,
that every Fréchet space (= completely metrizable locally convex topolo-
gical vector space) is a Ptdk space (= B-complete space in [16] = fully
complete space), and that every Cech-complete topological group is
a B(«/)-group in the sense of Husain [9], Chapter V.
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