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CARDINAL FUNCTIONS ON HYPERSPACES
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For a space X, ¢ (X) denotes the collection of all non-empty compact
subsets of X, and «/(X) denotes the collection of all non-empty closed
subsets of X. It is well known that ¢(X) and & (X) can be topologized
by the finite topology a base of which consists of all sets of the form

Uiy ..oy Uy = |K € 4(X) (respectively, K e o (X)):

K | JU; and EnU; # @ for each j},
where U,, ..., U, are open sets of X. We shall consider in this paper the
heredity on ¢(X) or & (X) of cardinal functions on X.

Let x,v,0,d,w,n,2z be the cardinal functions called character,
pseudo-character, tighiness, densily, weight, m-weight, width, respectively,
as defined in [2]. Let ¢ be the cardinal function of y and y; we put

9z (X) = sup{p(K, X): K e%(X)}, ¢4(X)=sup{p(F,X): Fe o(X)}

(for ¢ (K, X) and ¢(F, X), see [2]).
Let ¢ be the cardinal function of d and =; we set

ox(X) =sup{p(K): Ke€¢(X)} and ¢, (X)=sup{p(F): Fe o(X)}.

In the sequel, all spaces are assumed to be Hausdorff and all cardinals
are assumed to be infinite. N always denotes the set of all positive integers.

LEMMA 1. y(€(X)) > ng(X).
Proof. Let y (¢(X)) =m and K € ¢(X). Then K can be represented as
E = M{{Waj-es Waka>: a€d},
where k, € N and [4A| < m. Put
Y ={Vy=KEnW,:j=1,...,k, acA}.

We shall show that ¥~ is a z-base for the subspace K. Let @ # &
= @NK with G open in X. Then

L =K\Ge¥(X) and K #0L.
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Thus there exists an a € A such that L ¢ {W,, ..., W, >. This implies
LnW, =@ for some j. It follows that G = V,;. Hence n(K) << m for
each K € ¢(X).

LemMA 2. If X is locally compact, then 9% (X)) > xx(X).

Proof. Let X be a locally compact space with 9(%(X)) = m. Let
K e ¢(X). Put

% = {U: U is a compact neighborhood of K in X}.

It follows from the local compactness of X that K e Clyx)(%). Since
0 (#(X)) = m, there exists a subcollection %, of % with [%,| < m such
that K € Ol x,(%,). To see that %, is a neighborhood base of K in X,
suppose that K < @ with G open in X. Then K € {(@). There exists a U € %,
such that U e (@), which implies U < G. Therefore, {IntU: U e %,}
is a local base of K in ¢ (X).

In a similar way we have

CoROLLARY. If X is regular, then 0( (X)) = ygx(X).

Lemma 3. 9(¢(X)) = dg(X).

Proof. Let §j(#(X)) = m. Then

A(K) = 4(X) and O(AL(K)<m.

Thus it suffices to prove the inequality 9(s/(X))> d(X) when X
is compact. But this is clear from Theorem 1 in [3].

THEOREM 1. y(%(X)) = xx(X)dg(X).

Proof. Let x(#(X)) = m. By Lemma 1 and by trivial inequalities
<y and d<n we have dz(X)<<m. Let K e 4¥(X) and let #(K) =
{#,: a € A} be a local base of K in #(X) with |4| < m. Without loss of
generality we can assume that

ga = <Ba17 b Baka>7
where each B,; is open in X and k, € N. Then we put
B,=J{By:j=1,...,k}.

We infer easily that {B,: ae A} is a base of K in X, and thus
1z (X)dg (X) < m. Conversely, let m = yx(X)dg(X). Then we show that
% (#(X)) < m. Since yg(X)< m, there exists a base {U,: 0< e < w,}
of K in X, where w,, is an initial ordinal of m. On the other hand, dg(X)
< m implies the existence of a dense set D = {d,: 0 < a < w,,}. Since
%(p, X) <m, there exists a local base {V,(d;): 0<a< w,} of d,
in X. Put

YV = {Valdp): 0< a, 8 < w,}.
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Then [¥|<m. Let A4(¥’) be the totality of finite subcollections
of ¥". For each {V,,..., V;} € 4(¥") and 0 < a < w,, We put

{Viyeeoy Vi: Uy = {Le¥(X): Lc U, and LNV, # G for each j}.
Set
<'y‘> = {<V1, ceey Vk: Ud>: {Vl’ ceey Vk}GA(V),0<a< wm}-

Then <¥") is a family of open sets containing K with |(¥)] < m.
Let <W,,..., W,> be an open set containing K. Since K = | JW,, we
have U, = | JW, for some a. Now, W;NnK 3 @ implies that there exists a
V; € such that V; « W,. Thus

KE<V1’ ceey Vn: Ud> c <W1’ ooy Wﬂ>'

Hence we have y(%(X)) <m.

COROLLARY 1. ¥ (X) 48 first countable if and only if every compact set
of X is separable and of countable character.

This is an answer to Question 2 proposed by Smithson in [4]. The
similar argument is applicable to the case «/(X), and so we have

COROLLARY 2. x(# (X)) = y4(X)d,(X).

CorOLLARY 3. If X is locally compact, then x(¢(X)) = 0(%(X)).

Proof. The inequality 9(¢(X)) < x(#¢(X)) is trivial. Conversely,
by Lemmas 2 and 3, we have yx(X), dg(X) < 9(¢(X)). Hence by Theo-
rem 1 we have the equality.

COROLLARY 4. 2|(¢(X)) < 8(# (X)) if X is regular.

For the proof use the Corollary to Lemma 2.

This refines Corollary 2 to Theorem 2 in [3].

THEOREM 2. y (¢(X)) = yx(X)ng(X).

Proof. By Lemma 1, m = y(4(X)) > ng(X). Let K € ¢(X). Write

E=\{{Was..; Wy: acd}, |4]<m.
Set W, =J{Wy:j=1,...,k} If p¢K, then
L ={p}UKc¥%(X) and I #K.

Therefore, L ¢ (W .y, ..., W for some a. Then p ¢ W,. Consequently
K = ()W, Hence we have

¥ (¢(X)) = ye(X) g (X).

Conversely, let m = pg(X)ng(X) and K € ¢(X). Let ¢ = {@,: a € A}
be a zn-bage for K and let ¥V, be an open set of X with V,nK = @,. Put

¥ ={V,: acA} and K= \{W,: peB}, IB|<m.
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Let 4(¥") be the totality of finite subcollections of ¥". Then |4(¥")|
< m. For each {V,,..., V;,} € A4(¥") and f € B, construct

{Viyerey Vi Wp> ={Le¥(X): Lc Wy, LNnV; #0 for each j}.
Then {V,,..., V;: W, is an open set containing K. Suppose that
K # Le¥%(X) If L\K +# @, then there exist a point p e L\K and e B
with p ¢ W;. Then
Lé¢Viyeeey Vit Wpp
for any finite collection {V,,...,V,} of ¥. If L < K, then there

exist a point p e K\L and @, with G,NL =@. In this case we have
L ¢ {V,: W) for any # € B. Therefore, it follows that

K = NKViy ey Vit Wed: {Vy,..., Vi3 e A(¥), B e B).

This completes the proof.

A similar argument shows that

COROLLARY 1. y (o (X)) = yp (X)m4(X).

COROLLARY 2. Every point in €(X) is G, if and only if every compact
set of X is G, and has a countable n-base.

THEOREM 3. d(X) = d(¢(X)).

Proof. Suppose that d(‘ﬁ(X)) = m. Then there exists a dense sub-
set {K,:ae A} of ¥(X) with |A| = m. Take an arbitrary point p, € K,
for each a. Then D = {p,: ae A} is dense in X. Hence d(X) < m.

Conversely, suppose that D is a dense set of X with |D| = m. Then
Z (D) ={E < D: E finite} is a dense subset of ¥(X). Hence d(%(X))
< m.

COROLLARY 1 (Theorem 2.1 in [1]). |€(X)| < 2**®.

For the proof, use 2.4 in [2].

COROLLARY 2. | (X)| < 2z(X)zK(X).
Indeed, by 2.6, 2.20 in [2] and Theorem 1 we have

1€(X)| < d(€(X))1eD) = A Xy EIED < x) TES

THEOREM 4. (i) n(X) = #(¢(X)). (i) o(X) = o(¢(X)).
The proof is trivial.

25(X)ZK(X).
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