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ON 2-CELL IMBEDDINGS OF COMPLETE n-PARTITE GRAPHS
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In this paper we first survey the known results concerning 2-cell
imbeddings of complete n-partite graphs into closed orientable 2-mani-
folds. This discussion of necessity involves both the genus and the maximum
genus parameters. Many of the known values of these parameters are
for regular complete n-partite graphs, which are all Cayley graphs; we
discuss Jacques’ theory of reduced constellations, which applies to 2-cell
imbeddings of Cayley graphs. Application of the theory is illustrated,
in constructing both genus and maximum genus imbeddings, for the
complete 3-partite graphs K,, ,, ,, (m odd). Finally, we show that all com-
plete n-partite graphs are upper-imbeddable.

1. Introduction. A graph @ is said to be imbedded in the closed orien-
table 2-manifold M if the geometric realization of ¢, as a finite 1-complex,
is homeomorphic 'to a subspace of M. If M has genus k (k¥ a non-negative
integer), we write M = §;. The genus y(G) of a graph @ is the minimum &
such that G imbeds in S;. An imbedding of @ into 8, is called a minimal
imbedding. The components of S, —G are called regions, and a region is
said to be a 2-cell if it is homeomorphic to R A 2-cell imbedding of G
in 8 has every region a 2-cell. It is well known (see, for example, Konig [9]
or Youngs [20]) that a minimal imbedding of a connected graph G must
be 2-cell. Any 2-cell imbedding of a graph @, with p vertices and ¢ edges,
into 8, with 7 regions, must satisfy

p—q+r =2—-2k.

We now define the maximum génus yu(@) of a connected graph G
to be the maximum k such that G 2-cell imbeds in §;. From a result of
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Duke [2] it now follows that G has a 2-cell imbedding in 8, if and only
if (@) <k<yy(@). From the extended Euler formula given above
it readily follows that

< [ﬁ(—(—;—)—], where f(G) =q—p+1.

yu(@) < 2

If equality holds, G is said to be wupper-imbeddable. This requires
a 2-cell imbedding with » = 1 (if 8(G) is even) or with r = 2 (if (@) is
odd).

Attention was focused on the genus parameter by Ringel and Youngs
(see, for example, [14]), as their solution to the Heawood Map-Coloring
Conjecture involved the determination of y(K,). Other genus investi-
gations have tended to center on graphs related to K,, as indicated in
the following definition. For n > 2, a complete n-partite graph G = K, 1, m.
has p = > m,; vertices partitioned into n partite sets of m; (1 <1< n)

i=1
mutually non-adjacent vertices, respectively, and all edges joining verti-

ces from distinct partite sets. Thus
q = Z‘mim]'
i<j

for this graph. If m; = m for 1 < 7 < n, the graph is regular, and we write
G = K, . Equivalently, @ = K, can be defined by specifying @ =nK,;
that is, the complement consists of n disjoint copies of the complete
graph K,. Note that, in this notation, K, = K,,,.

2. Known results. The following genus formulae have been established
for complete n-partite graphs.

THEOREM 2.1 (Ringel and Youngs [14]).

(n—3)(n —4)
12

y(K,) ={ : for n>=3.

THEOREM 2.2 (Ringel [12]).

(my—2)(my—2)
7 (Ko m,) ={ - 1 - } for my, my > 2.
THEOREM 2.3 (Ringel and Youngs [15]).
(m —2)(m —1)
V(Ks(m)) = 9 .

THEOREM 2.4 (White [17]).

Y(Kmn,n.n) = (mn_22)(n—l) .
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THEOREM 2.5 (White [16]).

1_'2 2 3-_2
By ) = [ =)}

for my = my, > mg, my = 2, and my,+m; < 6.

The recently settled conjecture yp(K,.,) = (m—1)* is readily veri-
fied for m = 1 and 2; Ringel [13] first verified the case m = 4.

THEOREM 2.6 (Garman [4]). y(K,q,) = (m—1) for m =2 (mod 4).

THEOREM 2.7 (Jungerman ([8]). y(Kyum) = (m—1)* if and only if
m #* 3.

Since an imbedding of K,; on S5 has been found, the issue is now
completely resolved.

The graph K,, has been called the n-dimensional octahedral graph.
The conjecture here is that

V4 (Kn(2)) = {

’

(n—3)(’n—1)}
3

this is readily verified for n < 4. White [19] has shown that y(K,) = 5,
and Garman (private communication) has found that the conjecture
is asymptotically correct for n» a power of 3. We have also

THEOREM 2.8 (Gross and Alpert [5]).

(n—3)(n—1)

K =
Y ( n(2)) 3

for n =4 (mod 6).

For the maximum genus of complete n-partite graphs, the following
results appear in the literature.

THEOREM 2.9 (Nordhaus et al. [10]).
(%—2)(n—1)]

THEOREM 2.10 (Ringeisen [11]).

(my—1)(my,—1)
2 ]

yM(Kml,mz) = [

For 2-cell imbeddings of connected graphs G on S,, where y(G) < k
< yu (@), those which are self-dual (i.e. the geometric dual is isomorphic
to @) are of special interest. The following theorem appears in [19].

THEOREM 2.11. If m(n—1) =0 (mod 4), then K,,, has a self-dual
imbedding.

Thus K, (n =1 (mod 4)), K, (n odd), and K, , (m =0 (mod 4))
all have self-dual imbeddings. Theorem 2.11, together with the extended
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Euler formula, shows that, for n =3 (mod 4), K,,, has a self-dual
imbedding if and only if m is even.

The proof of Theorem 2.11, as well as that of several of the other
theorems given above, was greatly facilitated by the circumstance that K,
is, in fact, a Cayley graph; the imbedding theory outlined below (due
to Jacques; see [7] or [18] for a more thorough treatment) applies to such
situations.

3. Theory of reduced constellations. Let I" be a finite group, generated
by a set 4 < I'. The Cayley color graph C,(I") has vertex set I', and (g, g’)
is a directed edge — labeled (or colored) with ded — if and only if g’ = ¢gé.
Now let 47! = {67 | ded}, and form A* = AuA4~!; the elements of A*
are called currents. We assume that only generators of order two are con-
tained in 4N 47!, and for such a é we adopt the standard convention that
the two directed edges (g, gé) and (gd, g) can be represented as a single
undirected edge [g, gd], labeled with 6. The Cayley graph G4(I') is obtained
from C,4(I") by deleting all labels (colors) and arrows (directions) from the
edges; G4(I') is a graph having all edges of the form [g, gd] for gelI” and
ded. BEach regular complete n-partite graph K, is a Cayley graph,
as we will see in the next section.

Now let G4(T) be 2-cell imbedded in S,; we study the corresponding
2-cell imbedding of C,(I') in §,. This imbedding is described algebraically
(see Edmonds [3] and Youngs [20]) by specifying, for each geI’, the cyeclic
permutation ¢, of gA* (the set of vertices-adjacent with g) determined by
the orientation on S,. Let o, be the cyclic permutation of A4* induced
by the action of ¢, on gA*, and suppose that 2 is a subgroup of I' such
that if Qh = Qh', then ¢} = o} (for all b, b’ eI"). Such a subgroup always
exists, as we can set 2 = {e}, where ¢ is the identity of I. We will desire,
however, to take 2 as large as possible. In the terminology of Jacques [7],
Q determines a quotient constellation ¢ for the constellation C (C = C4(I")
in §8,); €' is an imbedding of the Schreier coset graph (see [1]) for Q in I,
the imbedding being determined by the collection {¢}}, taken over any
set {h} of right coset representatives of 2 in I". The dual (C')* of the quo-
tient constellation is called the reduced constellation.

The reduced constellation is a 2-cell imbedding of a pseudograph K
(with each edge directed and labeled with the current of its dual edge)
in a surface §; (j < k), called by Youngs [21] the quotient graph and quo-
ient manifold for C,(I") and 2, respectively. Youngs arrives at (C')*
by a different route; he first takes the dual C* of C,(I") in 8, and then
“mods out” regions with identically labeled boundaries, in accordance
with the subgroup 2. Jacques’ approach is consistent with that of
Gustin [6]. The following theory was introduced by Gustin, developed by
Youngs, and unified by Jacques [7].
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Define (after Jacques) a brin to be an ordered pair (g, g6*), where g
is a vertex in C, €', or (C')*, and 8*¢A4*. We think of each edge (in C, (',
or (C')*) as giving rise to two opposing brins, one in the oriented boundary
of each region bordered by the edge. Then (C')* satisfies the following
properties:

(i) Each brin carries a current from A4*.

(ii) Two opposing brins ¢ = (g, g6*) and 2~
currents; if # = 2™, the current has order two.

(iii) The regions are in one-to-one correspondence with the right
cosets of @ in I.

(iv) For each region, the currents appearing in the region boundary
are in one-to-one correspondence with 4*.

(v) If a brin « appears in the boundary of a region associated with Qg
and if 7' appears in the boundary of a region associated with 2g’, then
the current carried by z is in the set ¢~'Qg’.

What is especially important for the study of imbedding problems
is the converse: a reduced constellation M (I'/2) = (K in 8;) for C,(I')
and 2 satisfying properties (i)-(v) determines a 2-cell imbedding C of
C4(I') in 8, such that (C')* = M(I'/Q). In fact, the region boundaries
for (C')* determine the Emonds’ permutation scheme for the Schreier
coset graph imbedded as C’, and hence for C,(I') in §,.

Now, for each vertex v of K, let =, denote the product of the currents
directed away from v, in the order of the orientation, and let », be the
order of =, in I"(n, is determined up to conjugacy, so that v, is well defined);
v, is called the valence of v. The length of a region is the length of the closed
walk bounding the region. Then we have

THEOREM 3.1. Each vertex v of degree d and valence v in M (I'[Q) deter-
mines |Q|[v regions of length dv in the imbedding of C4(I") in 8,.

Moreover, as shown in [19], we have

THEOREM 3.2. Let C in 8, be represented by (C')* = M(I'/Q) in §;
with vy, vy, ..., vy the valences of the vertices of (C')*. Then

k= |2/(j—1) +1+-—2(1——)

=1

1 = (gé*, g) carry inverse

We now indicate how this theory apphes to 2-cell imbeddings of
regular complete n-partite graphs.

4. Applications to K, . To apply the theory of the preceding section,
we must first show that K,,, is a Cayley graph; that is, we must find
a group I" and a generating set 4 for I' giving G4(I') = K. We let Z,
denote the cyclic group of order s.
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THEOREM 4.1. Let I' = Z,,, and choose A* = I less all multiples of n;
then GA(P) == .K,n(m).

Proof. Consider @, the complement of G = G4(I'"). Since nel’ has
order m and n¢d, n determines n disjoint cycles of length m in G. The
remaining multiplies of » determine all possible chords for these cycles,
so that @ = nK,,; that is, G = K.

We remark that non-cyclic groups might also be chosen; however,
for our present purposes I' = Z,,, will suffice.

To illustrate the application of the theory, we compute y(G) and
yu(@) for G = Ky, m odd. (The computation of y(G) differs in method
from those given in [15] and [17]; the result for y,,(G) is new.)

THEOREM 4.2. y(Ky4y,)) = (m—2)(m—1)/2 for m odd.

Proof. For m =1, K,,) = K, and the result is trivial. For m > 3,
let H,, = G,I") for I'" = Z,,, and 4 = {1, m}; thus H, is a cycle of
length 2m with diametrically opposite vertices also adjacent. It will serve
as the pseudograph K of M (Z,,/Z,), after an appropriate assignment of
currents from A* = I less all multiples of 3, for I' = Z,,,.

For example, Fig. 1 shows the case m =3 with Hy = K;, in §,.
We choose 2 = Z,,= Z, of index 3 in I' = Z,. With the regions and edges
of this imbedding of K, labeled and directed as indicated, it is apparent
that properties (i)-(v) of a reduced constellation are satisfied. Moreover, K

Y

Q41

Fig. 1. M (Z9/Z;) for Kj) in 8

also satisfies the KCL (Kirchoff Current Law; that is, »is 1 at each vertex);
thus M(Zy/Z,) determines (6) (3) = 18 triangular regions (by Theorem 3.1)
in an imbedding for K, in 8, (by Theorem 3.2). The imbedding itself
is algebraically described by specifying the local vertex permutations {o;}s:
from the region boundaries of M (Z,/Z;) we obtain

o: (1,8,7,2,4,5) for Q,
or: (1,5,7,8,4,2) for Q1,
o: (1,2,7,5,4,8) for Q2,
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so that we have

oo (1,8,7,2,4,5), o, (26,8,0,5,3),
o;: (4,2,1,5,7,8), o0, (5,0,2,3,8,6),
ge: (7,5,4,8,1,2), a,:(8,3,5,6,2,0),

g, (3,4,0,7,6,1),

os: (6,7,3,1,0,4),

og: (0,1,6,4,3,7).

We can now compute the counter-clockwise region boundaries for ¢
by the rule (see [20]) that the directed edge (g,, ¢.) is followed by (gz, agz(gl));
for example, (0,1)(1,5)(5,0) is one of the eighteen triangular region
boundaries.

For m > 5, the construction generalizes that given above for m = 3.
We begin with H,, imbedded in §; for j = (m —1)/2. The three regions,
each, have 2m boundary edges. Pick any one region (label it Q2 = Z,,)
and label its boundary edges from A* for I' = Z,, in order as follows:

(1, -1,7, —7,13, —13,19, —19,...,3m —5, —(3m —5)).

The remaining m edges can now be labeled (uniquely) so that the
KCL holds. Label the region sharing the edges labeled 1, 7,13,19,...
..., 3m —5 with Q by 21, and label the remaining region 2. Properties
(i)-(iii) for a reduced constellation are now trivially satisfied; verification
of properties (iv) and (v) is a mild algebraic exercise. It now follows that
M(Z,,|Z,,), which we have constructed, determines (by Theorems 3.1
and 3.2) a triangular (since K = H,, is cubic and satisfies the KCL) imbed-
ding of K,,, into §, for

, =m(m—3)+1 _ (m—2)(m—1)

2 !

but triangular imbeddings are minimal.
THEOREM 4.3. 73 (Kyim)) = (3m(m —1))/2 for m odd.
Proof. In general, we have

ﬂ(K3<m,>] _ 3m(m—1)

Y (Kypmy) < [ 2 2 )

with equality holding if and only if there exists a 2-cell imbedding of
Ky with r = 2. We now construct such an imbedding. Consider the pseu-
dograph K of Fig. 2, with currents from 4 = {1,2, 4,5, ..., (3m—1)/2}
for I' = Z,,,; then again 4* = I less multiples of 3, so that G4(I') = Kyp,.
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If we subdivide each edge of K, we obtain the graph K, ,, which has an
= 1 2-cell imbedding in 8; for j = (m —1)/2, by Theorem 2.10. Thus K
has an r = 1 2-cell imbedding in 8; also. This is a reduced constellation

3Im-—1
1 2

O
a

Fig. 2. K for Ky,

for G,(Kymy)); the verification is immediate. It remains to compute »
for either vertex of K (since =, = n,", v, = 7,). But
(3m—1)/2 (m—1)/2 3me +1

= 7 — 3t =
7, 1

i=1 i=1
Now write m = 2s 41, so that n, =3s24 38+ 1, and 3m = 6s + 3; since
4(3s2+3s+1)—(28+1)(6s+3) =1,

(3m?+1)/4 and 3m are relatively prime and », = 3m. Thus, by Theorem 3.1,
we have constructed a 2-cell imbedding of K, in 8, with 2 regions of
length 3m2. This completes the proof, but we note that ¥ = [3m(m —1)]/2
is also established by Theorem 3.2.

COROLLARY 4.1. For m odd, K., has a 2-cell imbedding in 8y if and

only if
) (") <#=e(s)

By Theorem 2.3 or Theorem 2.4, and Theorem 5.1 of the next section,
we see that the restriction “m odd” can be dropped from the statement
of Corollary 4.1.

5. Maximum genus. In this section we show that all complete n-partite
graphs are upper-imbeddable. The existence proof is by double induction.
Although the proof may be reinterpreted constructively, it does not pro-
vide a precise algebraic blueprint for the construction, as does a reduced
constellation.

The following lemma from [11] will be helpful. V(G) denotes the
vertex set of the graph G.

LEMMA 5.1. Let G be a connected graph having a 2-cell imbedding with
i regions, 1 = 1,2. Let 8§ < V(@) be a non-empty set of order k. If i = 2,
assume that S contains two vertices s and t, with s in one region and t in the
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other. Let u be a vertex not in V (@), and define the graph G by the formula
(where + ) means adding the indicated edges to the graph)

G, = G+Z[u, 8], se8,

where V(Gy) = V(G)U{u}. Then G, has a 2-cell imbedding with i regions
if k is odd, and one with 3 —1i regions if k i3 even.

THEOREM 5.1. K, . . m, t8 upper-imbeddable.

Proof. We use induction on n. By Theorem 2.10, the induction is
anchored at n = 2.

Now suppose K, ., . m, iS upper-imbeddable; we use induction
on my,, to show that K, . . m.m,., IS upper-imbeddable.

If mg =1, we let 8§ in Lemma 5.1 be V(K m,, . ..m,), $0 that
Ko, m,,...me1 18 upper-imbeddable.

Now suppose Kml.mz. myi-1 18 upper- -imbeddable and again let
8 = V(Kp,m,,...mp) L B(Emm,,. mpt—1) 8 0dd, we must find vertices s
and v of V(K m,,. .m) Which are in different regions of the two-region
imbedding of K, ., . m,i-1- Since each edge in K, n, . m,¢—1 involves
avertex of K, ., m,, vertices s and v clearly exist. By Lemma 5.1, then,
regardless of the parlty of B( ml.mz»--,mk-f—l)7 we may add edges from a new
vertex w to each of the vertices in K, .. m, S0 that the resultant graph
Ko, my,....m,¢ Das a 2-cell imbedding with one or two regions. Thus
Ko m,,....mpmy, +1 and, in turn, Kml,mz,---,mn are upper-imbeddable.

6. Conclusion. Due to Theorem 5.1, the remaining questions of
interest in connection with 2-cell imbeddings of complete n-partite graphs
appear to be the following:

(i) For G = K, ,,..m, and n >3, find y(G) in the vast majority
of cases where it remains to be determmed (P 992)
(ii) Further, study self-dual imbeddings of these graphs.
In both of the above, it would seem natural to first focus on the

case @ = K,,, so that the theory of reduced constellations could apply.
Finally,

(iii) Find reduced constellations for yu(K,um,). (P 993)
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