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1. If f(«) is defined on the interval [ —1,1], then we define the
Hermite-Fejér interpolating polynomial to be the polynomial of degree
2n —1 uniquely determined by the conditions

H,[f, ] = f(@4), k=12,...,n,
H;[f,x,m] =0, k=1,2,...,n,
where

2k —1
(1) Ty, = COS -

om -, k=1,2,...,n.
It was shown by Fejér [2] that if f(x) is continuous on [—1,1],
then H,[f,x] converges to f(x) uniformly on [—1,1] as » tends to
infinity.
More recently Stancu [4] considered the polynomial R,[f, ] of
degree 4n —1 uniquely determined by the conditions

Rn[f’a"kn] :f(mkn)’ k=1127'--7""’7

(2)
R(nj)[fywkn] =0, k=12,...,n,

for j =1, 2, 3. Again, the nodes z,, are defined by (1). Stancu showed
that if f(x) is continuous on [ —1, 1], then R,[f, ] converges uniformly
on [—1,1] to f(x) as n tends to infinity. Furthermore he proved that

IR, [f, 2] —f(@)l = O(L)w(f;n "),

where the O (1) is independent of f and %, w{f; é) is the modulus of con-
tinuity of f, and |-|| denotes the uniform norm on [—1,1].
Later Florica [3] improved this estimate by showing that

logn

\BuLf, 2] —F (@)l = 0(1)w(f; ) for n> 1.

n
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In this paper we shall improve this last estimate and show, by ob-
taining a lower bound as well, that the estimate is, in some sense, best

possible.
Let w(6) be a modulus of continuity and let C(w) be the class of
functions f which satisfy

|f(@) —f(y)| <w(le—yl) for all # and y in [—-1,1].

Then we prove the following result:
THEOREM. There are positive constanis A and B such that

%Zw(%) < sup 1B LS, ] —f ()l Z ( ) Jor all n>1.

r=2

It should be noted that Bojanic [1] has obtained similar estimates
for Fejér’s operator. Also, this estimate improves that of Florica since

1w (1 1 v« [ nlogn
;;w(—;) - _ﬁzw(mlogn)
n
1 n logn) logn
< 2 (g < (507) —ome ()

2. First, let us find an upper bound for the error. Stancu has shown
that

R,[f, 8] = Y f(m)s(®),
k=1

where
(@) = Ek(m)+Gk(w)+Hk(m)7
1 . o [ Tn(®)\*
(3) By () =7'Ir(1—“’k)(1—w)(m) ;
1 T 4
m Gul2) = — (@ — o) (4n? —1)(1—mk)( =2),
n @ —
| 1 (e
®) (o) = 5r [52)

and z, = x, are, as in (1), the zeros of the Chebyshev polynomial T, (x)
= cos(narccosz) of the first kind.
Let x¢[ —1,1] and let j be an integer such that
lo—a;| < [0 —a| for k =1,2,...,n
Now, since R,[f, #] is uniquely determined by (2), it follows that

n

R,[1,2] = ) s(z) = 1.

k=1



Hence

=| X (f@) —f@se(@) | < X 1f (@) —F(@)]5e(2)
k=1 k=1

= D 1f(@) —f(@)|8(@) + If (@) —F (@) 8;(2)+ D) () —f(@)l;(@)
k=1 1

k=j+

= W, +Wy+W,.

If ) =1 or n, then either W, or W, will not appear. We begin by
estimating W,.

Suppose then that k¥ =j—4¢, where 1<¢<j—1, v = cosf, and
xz, = cos 0, as in (1). It then follows that, for feC(w),

(6) If (@) —f(#)] < w(lo—a]) = w(lcos 6 —cosby|)
<w(16—06)) = O(1)w (%)
To estimate s, () we estimate each of F,(x), G,(x), and H, () in turn.
From (3) we may deduce that

1 sin® 6, sin® 6 T; (x)

O P = Tout S ({04 672) S0+ 6)/2) s ((0— 6,1 7E]

But,

646,
2

sin 6, < sin 6,4 8in < 2sin

and, similarly,

0+6
sin 0 < 2sin T k.

Also, |T,(x)] = |ecosnf| < 1 and, by Jordan’s inequality,

(s' , 0—0;

-1
3 ) =0(L)(0—0,)"*=0@1)(n*s™%). .
If we use all these inequalities in (7), we obtain
(8) F,(z) = 0(1)s~%
Now let us consider G4 (z). From (4) and [1], p. 72, we deduce that
(9) G (2) = O(L)n " (1 —aw,) T3 (#) (2 —x,) ™ = O(1)37%
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From (5) we obtain
Hy(z) = 0()n " Ty (2)(x — )" = O(L)n~ (@ —m) 2

_ -2
=0(1)n"* (sin 6+, sin 0 0")
2 2

—oL)n~" (sin 0_20")_4 — 0(1)n~"* (%)_4.
Hence
(10) H,(x) = 0(1)i*.
Finally, from (8), (9) and (10) it follows that
(11) 8.(2) =0(1)i"% where ¥ =j—4¢ and i >1.
By (6) and (11) we now have
< (i), ST O (1
(12) W, = 0(1);«0(;)@-2 = 0(1)i_21‘w(;)z-2 - 0(1);w(7)n—1.

In this last step, we have used a result which is implicit in the paper
by Bojanic [1].
To estimate W, = [f(;) —f(«)|s;(#) we note that

0 < s8(w) < Zsk(m) =1

k=1
and
1
|f (;) —f (®)] < w(|cos 6 —cosb;]) < w(|6—0;]) =O0(L)w (;)
Consequently,
(13) W, =01)w (—:;)

To estimate W3 we proceed in the manner used to estimate W, and,
thereby, we obtain

(14) W, = 0(1)21 wlir)

n

r==]
v

The upper estimate stated in the theorem now follows from (12),
(13), and (14).

3. Let us now turn to the lower bound stated in the theorem. Let
g(x) = w(|x —%|). From the properties of a modulus of continuity it is
easy to see that g(«)eC(w). Furthermore,
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(15) ngP)IIRn Lf, #]1—f(@)l = IR, [g, 2] —g (@)l

m.[o 3] ~o(3)] = [ 3]

= Sa(ja-)unfz)> S

k=1

=

e

Now

1\ 4n*-1 @ T2 (1/2)\?
G"(E)" o’ (1_ 2)(1/2—w,.)

an?—1 o\ (T, (1/2)\* _ 1 @\ [ T,(1/2)\?
Z oant (1—?)(1/2—m,,) - (1_7)(1/2—%)

since T (1/2) = cos®*(nn/3) > 1/4.
1 1 @\ (T, (1/2)\?
) (3) > 5 2ol 7e3) - 3) (25

Therefore, we have
1/r
202 'w(n/ ) for n > 2;

(16)'Sw(!wk——l

k=1

this last inequality follows from Bojanic’s work [1], p. 74 and 75.
The lower estimate stated in the theorem now follows immediately
from (15) and (16). This completes the proof of the theorem.
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