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1. Introduction. Every nonzero integer of an algebraic number field has
a unique factorization into irreducible elements if and only if the field has class
number 1. Carlitz [2] has shown that the number of irreducible factors
occurring in a factorization is unique if and only if the class number of the field
is less than or equal to 2. For fields of class number greater than 2, Narkiewicz
[3], Narkiewicz and Sliwa [4], and Allen and Pleasants [1] have obtained
asymptotic estimates for the number of different lengths of irreducible
factorizations. In this article we obtain explicit formulas for the number of
different lengths of irreducible factorizations of an algebraic integer, when the
ideal class group of the field has Davenport constant at most four.

2. Notation and terminology.

K: an algebraic number field.

p: nonzero, nonunit integer of K.

I(f): number of different lengths of factorizations of f into irreducible
elements, where the length of an irreducible factorization is the number of
irreducible factors.

h: class number of K.

H: ideal class group of K.

X, (0<i< h): ideal classes of K, where X, denotes the principal class.

o(X,): order of the class X, '

Q(p): number of prime ideals (counting multiplicities) in X; which divide B.

s = Q(B): number of prime ideals (counting multiplicities) which divide f.

(B) = p,p,...p,: factorization of (f) into prime ideals.

[p;]: the ideal class of p,.

S = S(B): the sequence [p,], [P,], ..., [p,] of ideal classes determined by .

Block: a finite sequence of elements of H whose product is X,

Block product: if B = X% X5 ... Xt and C = X X5 ... X~} are blocks
and b, c; are nonnegative integers, then

BC = Xlpreoxhiter | X-pton-s,
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Irreducible block: a block which cannot be written as a product of two
subblocks.

D(H): the Davenport constant of H; ie., the maximum length of an
irreducible block of H.

R: the free commutative semigroup generated by the set of all irreducible
blocks of H; the elements of R can be represented as formal linear polynomials
Y a;B;, where each a; is a nonnegative integer and B; ranges over all the
irreducible blocks of H.

w(F): if FeR, the weight w(F) of F is the sum of the coefficients of F.

3. Preliminary results. Some general observations are made in this section,
which apply to any number field K.

LEmMMA L. If B = B,B,, where Q(B,) =0 for 1 <i< h and Q(B,) =0, then
1(B) = U(B).

Proof. Since every prime ideal factor of f, is principal, the number of
irreducible elements in any factorization of f, is Q,(f,). Hence I(f,) = 1 and
() = I(B,).

In view of Lemma I, for the remainder of the article we will assume that
Q20(B) = 0. 4

There is an obvious one-to-one correspondence between the set of all
partitions of S into irreducible blocks and a subset R’ of R. The coefficient of an
irreducible block B of an F in R’ is precisely the number of times the block
B occurs in the given partition of S.

LeEMMA II. If F belongs to R’ and some terms

G = Z bl'Bl'
i=1
of F are replaced with the terms
G =Y ¢C;
i=1

in R subject to the condition that

8= ¢y
i=1 j=1
then the polynomial F' obtained by this substitution also belongs to R'.

Proof. Since F corresponds to a partition of S into irreducible blocks, the
product condition insures that F’ also corresponds to a partition of S. Thus F’
belongs to R'.

The substitution of Lemma II can be considered as a transformation on R’.
The notation

T(Y. bB) = ¥ ¢,

j=1
will be used to denote such transformations.
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LEMMA III. The number of different weights of elements of R’ is precisely I(B).

Proof. For any F in R’, w(F) is precisely the number of irreducible
elements in the factorization of f determined by the partition of S correspond-
ing to F. :

Each element F of R’ determines a solution to the Diophantine equation

(*) 2y:43y:+...+Dyp-1 =5,

where y; is the number of irreducible blocks of length i+ 1 which occur in
F and D = D(H). A nonnegative integral solution to (*x) will be called an
admissible solution if it is determined by some F in R’

LEMMA 1V. [(B) is precisely the number of distinct sums of the form
y1+y,+...+yp-1, where y,,..., yp—, run through the set of admissible
solutions to (*).

Proof. Each F in R’ gives an admissible solution to () with
W(F) = yl+ e +yD_1.

Conversely, any admissible solution with y, + ... + yp_; = t corresponds to an
F in R’ with w(F) =t. The result follows from Lemma III.

4. Class groups of order 3 and 4. When H has order 3 or 4, it is shown that
I(f) is a linear function of m = min{Q(B)} such that X,e H has maximum
order.

LEMMA V. If H = Z,, then |(p) is the number of solutions to 3x+2y = s with
O0<xand 0<y<m

Proof. The irreducible blocks of H are X} (i = 1, 2) and X, X,. Hence the
number of irreducible blocks of length 2.in any partition of S(f) is at most m.
Thus [(f) is bounded from above by the number of solutions to the equation
satisfying the inequalities.

Conversely, let x, y be a solution to the equation which satisfies the
inequalities. Since (f) is a principal ideal,

Q,(8)+2Q,(8) =0 (mod 3).

Thus
Q,(B) = 2,(f) = m (mod 3),
and so
2y =s = Q,(f)+2,(8) = 2m (mod 3).
Hence : ‘

F =3(Q,(0-y) X1 +3(Q,8)—y) X3 +yX X,
is in R’ and corresponds to the solution x, y. Since distinct solutions to () give
distinct values of x+y, the result follows from Lemma IV.

LEMMA VL. If H = Z, x Z,, then () is the number of solutions to 3x+2y = s
with 0 < x<mand 0<y.
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Proof. Here the irreducible blocks are X? (i = 1, 2, 3) and X, X,X ;. Since
x denotes the number of irreducible blocks of length 3 in any partition of S, it is
clear that x < m. The remainder of the proof is similar to that of Lemma V.

THEOREM VIL. If H = Z,, then

g =",

Proof. If 3x+2y =35, then
y = 2s (mod 3),

so y = 2s—3t for some integer ¢, and so x = 2t—s. It follows from Lemma
V that

where e =s (mod3) and 1 <e<3.

2s—m<t<§ and
3 573

But s/2 < (2s—m)/3. Note that
2s—m =0 (mod 3)

<t.

N w»

and that
2s=3—¢ (mod3) with 0<3—-¢<2,
so that
L < 2s—3+¢ _ 28+£—l.
3 3
By Lemma V,
2s+¢ 2s—m m+¢

THEOREM VIII. If H=2Z,xZ,, then

I(B) = mT+&:, where e=5s (mod2) and e =1 or 2.
Proof. As in the preceding proof, y = 2s— 3t and x = 2t —s. From Lemma
VI,
S s+m 2s
=St <,
t 5 and ¢ 3
but (s+m)/2 < 2s/3. Since (f) is a principal ideal,

2,(8)+Q25(B) = 2,(p)+24(B) = 0 (mod 2),

N

SO
2,(B) = Q,(B) = Q4(f) = m (mod 2).
In particular, s = m (mod2). Note that
s=2—¢ (mod2) with 2—¢=0 or 1,
so that
‘> s+2—¢ _s—¢
2 2

+1.
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By Lemma VI,

S+m S—¢&E m+e
'(B)=T_(T“)“ =2

We now consider the case H = Z,. Number the ideal classes so that
o(X,)=o0(X3)=4 and o(X,)=2. Let

QBy=k, Q,B)=1 and QO f)=m.
With no loss of generality, we may assume that k > m.
LemMMA IX. If H = Z,, then |(B) < [m/2]+1.
Proof. By Lemma IV, [(8) is bounded by the number of solutions to
4x+3y+2z=s

which give distinct values for x + y+z. Since y = s (mod 2), y = s—2u for some
integer u and

2x+2z = —s+3u,

SO
z=s+u (mod?2).
Thus
z=s4+u—2v and x= —s+u+v,
SO

xXt+y+z=s—v.

Since the irreducible blocks of H are X{ (i=1, 3), X?X, (i=1, 3), X, X, and
X2, in any partition of S(f) the | X, terms occur either as singletons in
blocks of length 3 or as pairs in blocks of length 2. Thus [/ < y+2z, so
v < (3s—0)/4. On the other hand,

z < m+% (number of X,’s not used in blocks of length 3)
=m+3(—y)
Thus
y+2z < 142m,
and hence

Thus there are at most [m/2]+1 distinct values of x+y+z, where x, y, z is
a solution to (). This gives the desired bound for I(f).

THEOREM X. If H = Z,,, then

_(fm2]1+1  if >0,
’('B)_{[m/4]+l if 1=0.

Proof. First suppose that I > 0. Since (f) is a principal ideal,
k+2l4+3m =0 (mod4),
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so k=m (mod?2). Also,

k=m+2l imod4) and s=k+I+m=1 (mod2).
Let m=¢e=2¢ +¢, (mod4) with 0 <e<3 and 0<¢y, & < 1. Set
_3s—1-2¢,

v 4

and note that
4y = 3s—1—2¢y = 3k+2l+3m—2¢,
= 2(m—egyz) =0 (mod 4),

so that v is an integer. First, we assume that [/ (and hence s) is even, so
u = s/2—eg, is an integer. Using the equations given in the proof of Lemma IX,

we obtain
_ k—e 4 m—e
*=\"a 4 )

I+2
y=2¢, z= +28°—sl.

An element of R’ corresponding to this solution is

k—e m—e !
F = (T)X‘I‘+(—4-)Xg+31X%X2 +81X§X2+<§_31>X%+80X1X3‘

Since we will need a cubic term with positive coefficient, if ¢, = 0 apply the

transformation
To(XT+X3) = 2X3iX,

to F, giving the polynomial F'. Note that w(F) = w(F').
Define the following transformations on R:

T(X$+X2X,) = X2X,+2X,X,,
T,(X4+X2X,) = X3X,+2X,X,,
T, (XX, +X2X,) = 2X, X, + X2.

Note that each T; increases the weight of a polynomial by 1. Assume for the
moment that either ¢; = 1 or k > m. Apply T, followed by T, to F (F'if g, = 0)
(m—e¢)/4 times. Then apply T; ¢, times. Since each T; increases the weight by 1,

m—e m—g, m
} = = — .
I(B) 2( 2 )+81+1 2 +1 [2]+1

If k =mand ¢, =0, apply T, followed by T, to F’' (m—¢)/4—1 times, apply T,
one additional time, and then apply T, ¢;+1 =1 time. As above,

I(p) > 2(m;8—1)+1+al+1+1 - [g'-]ﬂ.
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Now, assume that I, and hence s, are odd. Note that
with 0 < 2(1—¢,)+¢&; < 3. Set

s—1 3s—1-2¢,
u——z— and U——4———,
sO
k+m—2—-2¢, k+m—(2—2¢,+ey+2¢,+¢p)
X = =
4 4
_k—(2(1—8,)+£0)+m—s_k+4el—(s+2)+m—s
B 4 4 4 4’
I—1+2¢,
y=1, Z=—7F—

An element of R corresponding to this solution is

k+ 46, —(e+2 -
F=( + 814 e+ ))x;‘+('"4 8)X§+(1—81)X§X2+81X§X2

-1
+<——2">X%+80X1X3.

Apply T, followed by T, or T, followed by T;, according as ¢; =1 or 0, to
F (m—¢)/4 times. Apply T, ¢, times, obtaining

1B) = Z(m;8)+sl+1 = [g]ﬂ.

The first result is now immediate from Lemma IX.

Now assume that | = 0. Here s = k+m with k = m (mod 4). Moreover, any
admissible solution of the Diophantine equation 4x+3y+2z = s must have
y = 0. The Diophantine equation reduces to

k+m
2 = —
X+z X

which has solution z = (k+m)/2—2x with 0 < z < m. Hence -
(k—m)/4 < x < (k+m)/4.

However, each admissible solution must correspond to an element of R’ of the
form

aXt{+bX$+cX,X,
with x = a+b and z = c¢. Therefore, 4b+c = m, so
z=c =m (mod4).
Thus
_k+m k—m —m

2x T—zs—z—(mod4) or xET(mod2).
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Thus at most [m/4]+ 1 of the solutions to the Diophantine equation are
admissible, so

i) < [%]H
On the other hand,

k—
F=( 2 )X‘}+( 2 )X +eX,X,

corresponds to the solution

x_k+m—23 s
=— =¢.

Let T, denote the transformation T,(X$+ X3) = 4X,X,. Note that T,, which
increases the weight of a polynomial by 2, can be applied to F (m—¢)/4 times.
Hence

m—

+1,
4

I(8) >

and so equality must hold.

5. Elementary class group of order 8. When H is an elementary abelian

2-group of rank 3, D(H) = 4 (see [5]), so the Diophantine equation becomes
(%*) 4x+3y+2z =s.
Here, it will be shown that /(f) is a linear function in x, and y, where
(x0s Yo» 2o) is an admissible solution to (**) with x = x, maximal and y = y,
maximal subject to x = x,.

Each element of H has a unique expression in the form

X,=X{xXixX4 with0<i,j k<1,
where X,, X, and X, generate H. Denote « using the 3 digits 1-i, 2-j, 3-k, and
then omit any zero digits. Thus, for example,
X=X, xXIxX,.

There are 21 irreducible blocks of H, 7 of each length 2, 3, and 4. Those of
length 2 are simply the squares of the non-identity elements of H. The
irreducible blocks of length 3 and 4 are

X1X2X12' X1X3Xl3s X1X23X123’ X2X3X23a X2X13X123’ X3X12X123,

X12X13X23, X1X2X3X123a X1X2X13X23a X1X3X12X239

X X1:X13X 123, X5X3X,X43,
X,X12X33X123, and  X;X3X53X3.
Let k, = Q(X,). Since any three non-identity elements, not contained in
a proper subgroup, generate H, we may choose X, and X, so that k, <k, <k,

for « #1,2. Then choose X, # X;, so that k, is minimal among the
remaining k,.
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LEMMA XI. Assume that (x,, yo, 2,) is an admissible solution to (»*) with
y =Yy, maximal for x = x,. If x=x, =xo—1,y=1y, and z =z, is another
admissible solution, then y, < y,+2.

Proof. Let F, in R’ correspond to the solution (x,, y,, z,). Suppose
¥1 > yo+2. If F, contains two different blocks of length 3, say X, X,X,, and
X,X;X,3, then applying

To(X X, X 12+ X, XX 13) = X, X3 X 15X 3+ X}

gives an F corresponding to an admissible solution with x = x, and
y =Yy;—2 > y,, contradicting the choice of y,. Hence we may assume that F,
contains only one type of irreducible block of length 3, say X,X,X,,.

Suppose now that F, contains at least two types of square terms disjoint
from X,X,X,,, say X%, and X3,. Applying

T(X, X, X124+ X134+ X33) = X, X, X 13X 23+ X 12X 13X 23

gives an admissible solution with x = x, and y = y, > y,, again contradicting
the choice of y,. Therefore we may assume that F, contains at most one such
square term, say X3,.

If F, contains the block X;X;3X,3X,,3, then applying

Ty (X3X13X23X 123+ X, X,X15) = X X, X3 X123+ X 12X 13X 23

yields an element of R’ with two types of blocks of length 3 corresponding to
the admissible solution (x,, y,, z,) which was seen to give a contradiction.

Now suppose that F, contains the block X3, and a block of length 4 which
does not contain X,3, say X,X,X,;X,;,5. Applying

Ty(X X, X3X123+2X X, X1, + X3)

= X3 X12X23X 123+ X, XX 12 X53 + X+ X3

gives an admissible solution with x = x, and y = y, —2 > y,, again contradict-
ing the maximality of y,. Thus F, can contain only one type of block of length
3, one type of block of length 2 which is disjoint from the block of length 3, and

no block of length 4 disjoint from either. Therefore, if F, contains an X3, term,
the only blocks of length 4 which can occur are

X1X2X13X23’ X1X3X12X23’ X2X12X23X123'
Since X,, X,5; and X,,3 can occur only in blocks of length 4, we have
Xy = k13+k3+k123.

But every irreducible block of length 4 must contain at least one element of
{X3, X5, X123}, in particular,

xo S k13+k3+k123 = xl = xo—l.

Thus we may assume that F, contains no X3, block as well as no

2 — Colloquium Mathematicum LIX.1
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Now every block of length 4 in F, contains exactly two of the elements
X,, X5, X33 and X,,3. Moreover, since these elements can occur only in
blocks of length 4,

xy = 3ky+ky3+kas+kiz3).

Label the irreducible blocks of length 4 as 4,, ..., 4,, and let a; denote the
maximum number of A4; which can occur in a partition of S. Then

a,+a,+as+a; <k,
ayt+a,+as+a; < ki,
a,+a,+ag+a; < ki,
a,+as+ag+a, < kqas,

where the blocks are labelled so that X, for a e {3, 13, 23, 123} occurs in block
A; if and only if a; occurs in the inequality for k,. Thus

2(a;+ ... +ag+2a,) < ky+k 3 +kys+kyss.
In particular,
Xo < a1+ +a7 < %(k3+k13+k23+k123) = X1,

a contradiction. Thus no F, can exist with y, > y,+2.
Let x= —s+u+v,y=5—2u and z=s+u—2v be a parametrization of
the solutions to (x*) as in the proof of Lemma IX.

LemMmA XII. Suppose x = x4, y = y, and z = z, is an admissible solution to
(**) with x, maximal and y, maximal with x = x,. If u = u, and v = v, are the
values of the parameters corresponding to this solution, then v < v, for all
admissible solutions to (xx).

Proof. Let (x,, y,,2,) be an admissible solution with x,—x, =t It
follows from Lemma XI that y, < y,+2t so that

uo—uy = 3(y;—yo) < t.
Thus
t=xo—X; = (Ug—uy)+[y—0,) < t+vy—0,,
and so v, < v,
LemMMA XIIIL If x = x,, y =y, and z = z, is an admissible solution with z,
maximal, then the corresponding v = v, is minimal for the set of all admissible
solutions.

Proof. Clearly,
z, <) [k/2] = 0.

Since () is principal, ’
kl +k12+k13 +k123 =0 (mOd 2),

k2+k12+k23 +k123 =0 (mOd 2),
ky+kis+k3+kiz3 =0 (mod2),
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and so, exactly 0, 3, 4 or 7 of the k, are even (odd). Moreover, if exactly 3 or
4 of the k, are odd, the corresponding X,’s form an irreducible block of length
3 or 4, respectively. If all 7 of the k, are odd, then clearly they can be
partitioned into one block of length 3 and one of length 4. Hence there exists
an admissible solution with x; <1, y, <1 and z, = ¢. Since y, = s—2u, and
X, = —S+u, +v, with x, and y, minimal, ¥, maximizes ¥ and v, minimizes v.

LeMMA XIV. Let x = xg, y = y, and z = z, be the admissible solution to (x*)
with x = x, maximal and y = y, maximal with x = x,. Let x =x,, y =y, and
z =z, be the admissible solution to (x*) with z, maximal. Then

l(ﬂ)sxo_xl'i' +1.

Yo— V1
2

Moreover, x, < 1, y, <1 and x, = 1 exactly when 4 or 7 of the k, are odd and
y, =1 exactly when 3 or 7 of the k, are odd.

Proof. Let f=x+y+2z, where 4x+3y+2z =s. Then

f= %—x =Ss—v.
If (x, y, z) is an admissible solution to (**), then f'is the weight of a correspond-
ing F in R’. Now [(f) is the number of weights of F in R’. Since f = s—uv, the
maximal and minimal weights are obtained when v is minimal and maximal,
respectively. From Lemmas XII and XIII, these values are given by v = v, and
v = v,, respectively. Hence

S— S—
(B < 14f,—fo = 1421 Yo

5 xl—T+xp

1
=14x,—x, +§(y0—y1).

The exact values of x, and y, were determined in the proof of Lemma XIII.
In order to determine x, and y,, we construct an element F in R’ of the
form
F=mA,+mA,+myA;+mB+n,C,+n,C,+n,Cj;,

where the A4’s, B’s and C’s represent blocks of length 4, 3 and 2, respectively.
Choose the A; and m; as follows:

Ay =X, X1:X13X123, my=k;, A;=X,X1,X23X123
and
m, = min{kz, klz—ml, k123—m1}.

If m, = k123—m1, then

A3 = X2X3X12X13 and my = min{kz—mz, k3, klz_(ml +m2), k13—m1},
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otherwise

Ay = X;3X13X33X 123, my=min{k;, kyz—m,, kaz—m,, ky33—(m; +m,)}.
The choice for B depends on m, and m, as follows:
If m, =k, and my = k; or my = ky,3—(m, +m,), then

B=X,X13X3;
and
my, = min{klz—(ml +m2), k13—(ml +m3), k23'-(m2 +'n3)}.
If my =k, and my = k;3—m, or my = k;3—mj, then
B= X3X12X123
and
m, = min{ky—m,, ky; —(m, +m,), ky;3—(m; +m,+m,)}.
If my=k,,—m, and my = ky3—m, or my = ky,3—(m, +m,), then
and
my = min{k, —my, ky—ms, ky3—(m,+m;)}.
If m, =k,;,—m, and my = ky,3—m, or my = k,, then
B=X,X13X123
and
m4 = min{kz—mz, k13—(m1 +m3)9 k123—(m1 +m2 +m3)}.
If my =k;33—m, and my; = k,—m, or my = k,, then

B=X1,X13X3;3
and
m, = min{k,, —(m, + m, +m;), ky3—(m; +my), kyz—m,}.

If my=kyy3—m, and my =k, —(m;+m,) or my = ky;3—m,, then
B=X,X3X>3
and
The C; represent the remaining X, in S(f) which must occur in pairs.
LEMMA XV. The polynomial F defined above has minimal weight in- R'.

Proof. In each case F corresponds to an admissible solution of
4x+3y+2z = s with x maximal and y maximal for the value of x. By Lemma
XII, the corresponding v = v, is maximal. Since w(F)=x+y+z=s—v is
minimal when v is maximal, the result follows.

Set ¢, =m; (mod2),e;,=0 or 1 for 1 <i<4. By Lemma XIII,
F’' = eA+¢,B+squares
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has maximal weight in R’, where ¢ = 1 if exactly 4 or 7 of the k, are odd and
¢ = 0 if exactly 4 or 7 of the k, are even, ¢, = 1 if exactly 3 or 7 of the k, are odd
and ¢, =0 if exactly 3 or 7 of the k, are even.

LEMMA XVI. Let F and F' be as above. If k,, # 0, then for any integer y with
w(F) <y < w(F’) there exists an element F, in R’ with w(F,)=1y.

Proof. Suppose there is a series of transformations, which when applied to
F yields F'. If each of these transformations increases the weight by at most
one, then there is an F, with w(F,) = y. Thus we must show that such a series
exists.

First assume that m;, = m, = m; = 0. Here F = m,B+squares. If m, <1,
then F = F’ and the lemma is trivially true. If m, > 1, then apply

714(28) = Cl +C2‘+‘ C3

(m,—¢,)/2 times. Observe that each application of T, increases the weight by
one.

Now suppose that at least two of m,, m, and m, are positive, say m, > 0
and m, >0 or my > 0. Define

T(A;+A) = A;;+C+C
e.g.,
T(A,+4;) = X, X, X 13X 23+ X1+ X1as.

Note that T;(4;+ A;;) = A;+squares and that T, increases the weight by
one. One sequence of transformations taking F to F’ is as follows:

Apply T, to A, + A, and then to A, + A, (m, —¢,)/2 times, followed by T,
to A,+ A, and then to A,+ 4,5 (m,+¢,)/2—1 times, and finally apply T, to
A,+A; and A;+ A,3 (my—e;)/2 times. This yields

F,=¢6A,+(2—¢,)A, +e3A5+m,B+squares.

If ¢, =&, =&y =0, then F, =2A4,+m,B+squares and this can be dealt
with as in the case of exactly one of m,, m, or m; being positive. Otherwise, at
least one ¢; # O for some i < 3. Apply T, ¢,+¢&;+1—¢, more times yielding
F, = A+ m B +squares, where A, the remaining block of length 4, depends on
m,, m,, m,. Next apply T, (m,—¢,)/2 times yielding F, = A +¢,B+squares. If
g, =0 or A and B are disjoint, then no further transformations are possible.
Otherwise,

T((A+ B) = B’ +squares
can be applied one time. If m, = 0 and m;, > 0, m; > 0, then interchanging A4,
and A4, in the above sequence of transformations yields the desired result.

Now suppose that exactly one of m,, m, or m, is not zero, call it m. Then

F =mA + m,B+squares.

If m=m, and m, = 0, then since k,, >0, F contains an X%, term, so the
transformation '
To(A3+X32) = X3 X 12X 123+ X 12X 13X 23
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can be applied. If m, =0 and m # m,, then k, >0, so k, >0 for a > 2. If
m, # 0, then apply

T(A,+X33) = X, X,3X123+X1,X13X23 =B +B.
If m, #0, then apply

To(A,+X33) = X2X 13X 123+ X1,X,3X,3 =B +B.

Thus there is always a polynomial F, in R’ such that w(F) = w(F,) and F,
contains a block of length 3. In fact,

F, = (m—¢gg)A+(my +e5)B+esB +squares,

where ¢ = 1 if m, =0 and &5 = 0 otherwise. Now suppose that 4 and B are
not disjoint. We can apply T4A+B)= B’ +squares followed by
T¢(A+ B) = B+squares for a total of m—e, transformations. Next apply
T,2B)=C,+C,+C; and T,2B)=C;+C,+C;

as many times as necessary to get a polynomial F, with the coefficients of the
B and B’ terms to be 0 or 1. If F; = B+ B’ +squares, then by applying the
inverse of T we get F, = A+squares. Since T does not change the weight of
a polynomial, w(F,;) = w(F,) = w(F’).

Now we must consider the case where the A and B are disjoint. This can
occur only when

A=A1=X1X12X13X123 and B=X2X3X23.

If m =1, then 4 or 7 of the k, are odd and x,=x; =1. Thus no
transformation involving A will increase w(F) and applying T, (m, —¢,)/2 times
will yield F’ as in the case m; =m, =m; =0. If m; > 1, then applying
T, (A+B)=A,+B, = X,X,X,3X 123+ X X3X 5
to F gives
Fy,=(m;—1)A;+ A, +(m,—1)B+ B, +squares.
This is similar to the case where at least two of m;, m, or m; are positive.
THEOREM XVIL If k,, # 0, then

my—e,

2

where 6 =1 if 0 or 3 of the k, are odd and 6 =0 if 4 or 7 of the k, are odd.
If ki, =0, then

+9,

IB)=m;+m,+m,+

1) = =241,
Proof. By Lemma XIV,

I(B) < xo—x, +yo—y1

1.
2+
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By Lemma XVI, factorizations of all lengths between w(F) and w(F’) occur
when k;, # 0 and equality holds. By our choice of F, x, = m; + m,+m, and
Yo = my. By Lemma XIV, x, = 1 when 4 or 7 of the k, are odd and x, =0
otherwise, so 0 = 1—x,. Since y, = ¢,,

m,—é,

2
Since k, <k, <k;;,k; =k, =0 and m; = m, =0 when k,, =0. Also

B = X12X13X23a

I(B)=m;+m,+my+ +4.

so m, = 0. Thus F = m,A,+squares and the only transformation possible is
T4(2A4,) = squares.

Ty increases the weight by two and can be applied (m; —¢,)/2 times. Thus there
are (m;—e;)/2+1 weights of polynomials in R'.

CoroLLARY XVIIL Ifk,, # O, then I(B) = 1 if and only if one of the following
is true:

(@) Either O or 3 of the k, are odd, k, =k, =k; =0 and min{k,,,
ki3, ka3} < 1.

(b) Exactly 4 of the k, are odd, k, =k, =0, ky =1 and either k;3 =1 or
k2 = 1.

3(c) All 7 of the k, are odd, k, = k, = ky = 1 and at least two of k,,, k5 or

kis3 are 1.

Proof. (a) From Theorem XVII we have I(f) = m, + m,+m,+(m, —¢,)/2
+1 when 0 or 3 of the k, are odd. Thus, if I[(f)=1,m, =m, =m,; =0,
and so k, =k, =k; =0. Also

m,=¢, and B=X,,X;3X;,,

SO min{klz, k13,.k23} <L
Conversely, if no k, are odd with k, = k, = k; =0, then m, is even and
min{k,,, ki3, k23} = 0.

Thus m; = m, =my =m, =0 and I(B) = 1. If exactly 3 of the k, are odd and

min{klz, k13’ k23} =1.
Thus m; =m, =m; =0 and m, =¢, =1, and so /() = 1.

(b) Here Theorem XVII shows that I(f) = m, +m,+m,+(m,—e,)/2. If
I(B)=1, then m; =m, =0, m; =1 and m, =¢, = 0. Since

Ay = X;3X13X53X 423 and B=X,,X,3X,;,

it follows that k, =k, =0, ky; =1 and k3 =1 or k3 = 1. Conversely, the
given conditions force I(f) = 1.
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(c) As above, I(f) = m;+my+my+(m,—e,)/2. If I(B) =1, then

F = A, + B+squares.
Thus k;, = 1. Because

A =X X12X13X1,3 and my=m;=0,

at least two of k,,, k;3 and k,,3 are one. Since k, < k; <k, for « = 13 or 123,
k, = k; = 1. Conversely, the given conditions force [(f) = 1.

COROLLARY XIX. If ki, =0, then I(B)=1 if and only if ky < 1.
Proof. I(B) =1 if and only if m; = ¢,. Since k, =k, =0, my =k, and
ky =0 or k; = 1. Conversely, suppose that k, < 1. Then m, < 1 and m, = &,.
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