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ON THE NON-CONVERGENCE
OF SUCCESSIVE APPROXIMATIONS IN THE DARBOUX
PROBLEM FOR THE EQUATION 2, =f(z,y,2)

BY
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1. Introduction. Many authors ([2]-[5], [8], [9], [11]) have discus-
sed the problem of the convergence of successive approximations to
a solution of differential equations when the latter is unique in virtue
of a uniqueness criterion. A well-known example due to Miiller ([10],
see also [4], p. 53) shows that the continuity of the right-hand side
of a given equation and uniqueness of its solutions are not sufficient to
guarantee the convergence of its successive approximations.

It was proved in [1] that non-uniqueness of a solution of the Darboux
problem

z:’c’y = f(z,y,2) for (z,y) € [0, a] xX[0, b],
(1) z2(x, 0) = o(x) for z €0, a], '
2(0,y) = 7(y) for y € [0, b]

‘is & rather rare case. In this paper we show that such is also non-conver-
gence of successive approximations of (1).

Let R denote the real line, and let ™ be an m-dimensional linear
vector space with the norm '

el = max (|z4], [@aly <.y [@pl), where @ = (o,, Ty, ..., T,).
Let P denote the set in R™** defined .by
P ={x,y,2):(x,y)eD,ze R}, where D = [0,a]x[0,b].

In this paper we consider functions f: P— R™ satisfying the following
hypotheses:

(Cy) f(+y-,2): D>R™ is measurable for all ze R™.
(C,) f(x,y,*): R*™>R™ is continuous for a.e. (1) (x, y) € D.

(*) a.e. stands for almost every.
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(C,) There exists a number M > 0 such that |f(x,y,2)| < M for
a.e. (z,y) e D and for all ze R™.

2. Fundamental metric space and basic theorems. Let @, be a set
defined by

Q. ={(®,y,2)eP:|zll<a} for a>0.

In the proof of the main theorem of this paper we shall use the fol-
lowing results: :

TueoreEM 1 (Alexiewicz-Orlicz). Let f: Q,—~R™ satisfy (C,)-(C;) for
a> 0. Then there exists a sequence {f,} of continuous functions from @,
to R™ such that

(1) Ifnl@, ¥, IS M for (,y,2)eQ, and n =1, 2, ...,
(ii) im max |f,(z,y, 2)—f(=,y,2)| =0 for a.e. (z,y)e D.

n—>00 lieli<a
In a way similar to that in [6] we can easily obtain

THEOREM 2. Suppose that f:Q.—>R™ satisfies (C;)-(C,) for a> 0.
Then. for every ¢ > 0 there. exists a function f*: Q,—R™ such that
1) If*(z, y, 2 < M for (v,y,2)€q,,

(ii) max Iff(®,y,2)—f(,y,2)I<e for ae (2,y)eD,
2] a
(iii) f*(#, y,2) has continuous partial derivatives of all orders with

r68PECt 10 21,23y soey 2y, Where 2 = (21, 25y ...y 2,)-

Let us denote by F(P) the set of all functions f: P—R™ satisfying
(Cy)-(C4). We can define in F'(P) an equivalence relation ~ in the following
way : for any f,,f, € F(P) we write f, ~ f, if there is a set A < D of
measure zero such that

filz,y,2) =f,(v,y,2) for every ze R™ and (»,y) e D\A.

Let #(P) = F(P)/~. For given fe F(P) we shall denote by f the
element of # (P) which contains f. We consider & (P) together with a metric
function p defined by

Q(fnfz) = "fl_fz”;,
where )
Ifls = [[sup{lf(@,y,2)l: (@,y,2) ePldzdy
D 2z

for f,f,,f. €#(P) and fef.
LEMMA 1. (#(P), o) is a complete metric space.
Proof. Let {f,} be a sequence of # (P) such that

|lfn—fmlLf->0 a8 n, m—>oo,
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and let f, €f,, f., €fn. For every & > 0 there is a number N = N (¢) such
that

[ [ sup{iif(@, 94, 2)—fu(®, ¥, 2)ll: (%, 9,2) e Pldwdy < &
D z
for n, m > N (¢).

Suppose that {n,} is such that n, < ny < ... and n,_, > N (1/2%*). Then.

[ [ sup{ilfu, @, ¥ 2) = Frp_, (@, ¥, 22 (@, 9, 2) € P}dody < 1/2%*
D 4

for k =1,2,...
Taking

A, = {(x,y) e D: suP[”fnk(my Y, z)—fnk_l(w’ ¥, 2): (x,y,2) e P]1>1/2"},

we have
1/2%% > ff sup{llfnk(w, Y,?) —fnk_l(wy Y, 2): (x,y,2) € P}dxdy
Ay *

> (1/2%) u(Ayg).
Then u(4;)<1/2*. Let

00
U 4.

k=14

s

[

-

Since

u(d) < ,;(UA,,)<2,¢(A,,)<Z1/2'=—1/2‘1 fori=1,2,...,

k=1 k=t

we have u(A) = 0. Let A~ = D\A and A; = D\A4,. We have

Then (x,y) € A~ implies the existence of a number ¢ such that, for
each k> i, we have

Bup{"fnk(-r, Y,y 2) fnk_ (®,9,2): (z,¥,2) e P} < 1/2k

Therefore

Zsup{"fnk(w’ Y, 2) fnk_ (w’ Y, z)" (wy Y, Z)} < o for (w, Y ) eA”.

k=i &

Then the series \

fno(wi Y,2)+ 2 [fnk(a% Y, ?) _fnk_l(w’ Yy2)]

k=1
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is absolutely and uniformly convergent on A~ independently of z € R™.
Let f: P> R™ be defined by

# : Ilim Jue(@s9y,2) for (z,y) e A~ and z e R™,
Xy Y,R) ={ koo
il 0 for (z,y) e A and z € R™.

The function f satisfies (C,)-(C,;). We shall show that

llfn—f||—>0 a8 n—>oo.
For n,k > N(¢) we have

ffsup{“fn(w’ Y,2) —fnk(m, Y, 2)|l: (#,9,2) e Prdvdy < e.
D z

Taking, for fixed =,
Yi(z,y) = sup{lfu(z, ¥, ?) '—fnk(mi y,2): (2,y,2) e P},

‘we have
1fa—fle = [f lim ¥ (2, y)dody.
D —>00
In virtue of Fatou’s Lemma we obtain

J[ im ¥, (2, y)dedy < lim [ [ ¥, (o, y)dwdy = lim|f, —f, s < &

D k—oo k-»o0 D k—»o0
' for n > N (e).

This completes the proof.

Let o€ AC([0,a], R™) and e AC([0,b], R™), where AC(I, R™)
-denotes the set of all absolutely continuous functions from I to R™. It
was proved in [1] and [7] that for every f e # (P) there exists at least one
solution of (1). Obviously, we have to assume that o(0) = 7(0).

For f e#(P) and for fixed o and v defined as above we consider
the sequence {2/} of successive approximations defined by

Ty
@) 2hi (@, y) = go(m, 9)+ [[ (&, n, 2 (&, m)dédn
00

for n =0,1,...,
where 2J € C(D) and ¢,(z,y) = o(x)+7(y) — o (0).
We call the sequence {2} converging in D if {z!(x,y)} converges
for every (x, y) € D. It is easy to verify, as in the theory of ordinary dif-
ferential equations, that if f € # (P) satisfies the Lipschitz condition with

respect to z, then {2/} is uniformly convergent to the unique solution
of (1). It is easy to see that '

max ||zf (z, y)| < a for each n =0,1,...,
i |
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where
a = max {sup 7 (2, Y)l SUP lipo (7, )| + ab M}
3. Non-convergence of successive approximations. Now we show
that non-convergence of the successive approximations (2) is a rather
rare case. More precisely, the set of = &# (P) of those functions f for which

{#}} is not convergent is of Baire’s first category in the space (#(P), o).
For given f e #(P) and (x,y) € D let A(f, x,y) be defined by

A(f, z,y) = lim sup{diam B2} (=, 9)1},

where
E[z{;(‘v’ ¥)] = {zi(wy Y), z’rfa+1(w7 Y)y ooty

and diam A denotes the diameter of a set A < R™. Obviously, the equality
A(f, z,y) = 0 for each (z, y) € D is equivalent to the convergence of {z]}.
Thus the sequence {2/} is not converging in D if and only if there is
(%, %) € D such that 4(f,#,7) > 0. Let {(«,,y,)} be a sequence of points
of D dense in D and let

Qupr = {f € (P): Ifls < M, A(f, 2, 9,) > 1/p}.
LEMMA 2. 2y, are closed subsets of # (P) for all M,p, r =1,2,...
Proof. Suppose that {f,} is a sequence of 2,,, such that
Ifs —flls—>0  as koo,
where f € # (P). It is easy to see that ||flls < M. Furthermore, there exists
a subsequence {f, } of {f,} such that
Sup {1/, (2, Y5 ) — (@, 9, 2)l: (@, 9, 2) € P}>0
’ for a.e. (,y) e D and k—>co.
For each k = 1, 2,... we have 4(f,,, #,,%,) > 1/p. Then

sup {diamE[Z" (x,,v,)]} >1/p for n,k =1,2,...

v=1,2,...
Hence for every | =1, 2, ... there is » such that
diam B2, (2, 9,1 > 1/p —1/L,
i.e.
?33 llzf.”i‘.,+u(w,-, Y) —-zi"f,,w(w,, y )N >1/p—1/.
Then for every ¢ =1, 2, ... there is (u,, v,) such that
llzf.’il‘y,wq(w” Yr) —z{zn-i’-crﬁvq(-’”n Yl >1/p—1l—1/q for m,k=1,2,...

Let
Z(ky n+w+u) (@, y) = &Py 1 (@, 9)-
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oA,
N

It is easy to see that the family X < C(D, R™) defined by
={Z(k,n+n +uq)}k,n,l,q=1,2,...

satisfies the hypotheses of Arzela’s Theorem. Then there is a subsequence
{Z (ny, n+v,+u,)} of {Z(k, n+v+u,)} which is uniformly convergent
on D. Suppose that

limZ(ng, n+v+u,) =Z(n+v+wu,) for every fixed n, » and u,.

k—oo

For n,l,¢ =1,2,... and (z,y)e D we have
Z(n+v+ug) (@, y)—o(@) —z(y)+0(0)—

—fff(f,n,Z(%+vz+uq—1) (&, n))déan = ZA (@,9),

i=1

where

Mi(@y y) = Z(n+v+ue) (@, y) —Z (me, 049+ 1%5) (2, 9),
Ay (2, y) =ff[fn,,(&,n,Z(nk,n+v,+uq—1)(6,n))—

—Fo (&3 1y Z(n+9+ug—1) (€, 7))| A& dn,
Ag(x, ) =ff[fn,,(f,n,Z(n+v,+uq—1)(§,n))—

—f(&; 15 Z(n+v+u,—1)(&, n))| dEdy.
Hence
Z(n+v+ug)(z, y)

=a(@) +7@®)—0(0)+ [ [ f(&, 1, Z(n+n+u,—1)(&,n)dédy

for (z,y)eD and n,l,9=1,2,...
Therefore Z(n+ v+ u,) = z£+,l+uq for all n,1,q = 1,2, ... Since
IZ (7.5 1 4914 %g) (%) Yp) —Z (M) 1+ v+ 0g) (2, ¥ )| = 1/p—1/1—1/q,
we have
12 4oy g (@r s Ur) —2hsng0(@ry )| > 1p—1/1—1]g  forallm,l,g=1,2, ...

It is not difficult to see that A(f, w,,y,)> 1/p. Hence fe Qyy,,.
LEMMA 3. Q. are non-dense in ¥ (P) for all M,p,r =1,2,
Proof. Suppose that there are (M, p,r) and a sphere 8(fo) = F (P)

with center f, € # (P) and radius & > 0 such that 8,(f;) < .QMp, By Lem-
ma 2 this means that 8,(f;) <= Qpr- Note that for every fe Q34 there
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is a number a > 0 such that the sequence {f } corresponding to f is the
same as {z/'9} corresponding to.f|Q, where f|Q denotes the contraction
of f to the set

= {(z,y,2) e P: 2| < a}.
In virtue of Theorem 2, for f,|Q and 8> 0 there exists a function
f°: Q—>R™ such that conditions (i)-(iii) of Theorem 2 are satisfied. Then

max{||f‘(w,y,z)—fo(w, y,2): (x,y,2)eQ} <6 for a.e. (z,y)eD.

Taking & < k/(a-b) we obtain ||f°—f,|s < h. Then

ffe8ilfo) = Q1pr-
But f° is Lipschitz continuous with respect to 2, and so
sup 4(f°, #,9) = 0.

Therefore f° ¢ Q31pr- This completes the proof.
Now we can prove the main result of this paper.

THEOREM 3. The set o/ of those f € F (P) for which successive approx-
imations {¢I} are mot converging is of Baire’s first category in the space
(g'- (P), 9)'

Proof. In virtue of Lemma 3 it suffices to show that

oA = U U U -QMpr'
M=1 p=1r=1
It is easy to see that 2,,,, <« for all M,p,r =1,2,... Let us
observe that
— {f e #(P); there is (¥,9)eD: A(f, &, 7) > 0}.

Suppose that fesf. There exists a positive integer 7 such that
A(f, @, y) = 2/p. It is not difficult to see that for a given 7 there exists
an element (Z, y) of the sequence {(z,, y, } such that

A(f,%,9) > A(f, 3, 9)—1/p.

Therefore, there is a positive integer 7 such that

A(f’ X7, ¥;) = 1/p.

Obviously, we can find a positive integer M such that ||f|y < M.
Therefore f e Qxp7- Hence

o o oo

A< U U U Q-

M=1p=1r=1
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the

Remark. Theorem 3 and a well-known Baire’s theorem imply that
set # of those f € # (P) for which successive approximations {2/} are

convergent is dense and of second category in the space (# (P), o).
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