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OF NON-ISOMORPHIC STEINER QUADRUPLE SYSTEMS
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1. Introduction. A Steiner quadruple system (or, more simply, a quad-
ruple system) is a pair (@, b), where @ is a finite set and b is a collection
of 4-element subsets of @ (called blocks) such that any three distinct ele-
ments of @ belong to exactly one block of b. The number |Q| is called the
order of the quadruple system (@, b). Hanani [4] proved in 1960 that the
spectrum for quadruple systems consisted of the set of all positive integers
n = 2 or 4 (mod 6). It is easy to show that a quadruple system of order
n has n(n—1)(n—2)/24 blocks. Two quadruple systems (Q,,b;) and
(Qs, by) are said to be isomorphic provided that there is a 1-1 mapping
of @, onto @, which maps the blocks of b, onto the blocks of b,. The purpose
of this note is to give a very simple construction for quadruple systems
which can be used to construct large numbers of non-isomorphic quadruple
systems of a given order. Other work along these lines can be found in
[1], [4], [8] and [10]. The techniques used in this construction are quite
similar to those developed by the author in [5], [6] and [7].

2. Construction of Steiner quadruple systems. By a 3-skein is meant
a pair (@, {,,>), where @ is a finite set and {,,)> is a ternary operation
on @ such that if in the equation {(x,y,2) = w any three elements of
z,Y,2 and w are given, then the remaining element is uniquely deter-
mined [2].

Now, let (Q,b(q)) and (V,b(v)) be quadruple systems based on
Q={1,2,...,q} and V ={1,2,..., v}, respectively, and let (@, {,,))
be a 3-skein. Now define on the set @ x V the following collection b of
"4-element subsets:

(1) For every block {a,db,c,d}eb(q) and for every welV,
{(a, w), (b, w), (¢, w), (&, w)}eb.

(2) For every 2-element subset {a, b} of @ and every 2-element subset
{u, w} of V, {(a,u), (b, u),(a,w), (b, w)}ebd.
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(3) For every block {a,b,c,d}eb(q) and every 2-element subset
{u, w} of V the following six subsets belong to b:

{(a,u), (b, u), (¢, w), (d, w)}, {(a,w), (b, u),(c,w),(d,w)},
{(a, u), (b, w), (¢, u), (&, w)}, {(a, w), (b, u), (¢, w), (d,u)},
{(a, u), (b, w), (¢, w), (&, w)}, {(a,w), (b, w), (c,u),(d,u)}.

(4) For every block {z, vy, 2, w}e b(v) and every three (not necessarily
distinet) elements p, ¢ and s of Q,

{(p, ), (q,9),(8,2), (KD, g, 8, w)}eb Where z<y<z<w.

THEOREM 1. (@ X V, b) is a Steiner quadruple system.

Proof. It suffices to show that every triple of distinct elements
from @ x V belong to at least one block and that

bl = (gqv)(qv—1)(qv—2)/24.

So, let #, ¥ and 2 be any three distinct elements of Q x V. If z, ¥y and
2z all have the same second coordinate, they belong to a block of type (1).
If exactly two of them have the same second coordinate, they belong
to a block of type (2) if the set of first coordinates contains two elements,
and to a block of type (3) if all of the first coordinates are different. The
last case is where x, y and 2 have distinet second coordinates. We may
suppose that = = (p,v), ¥y = (¢, w) and 2 = (8, u), where v < w < u.
Let {v, w, u, t} be the block of b(v) containing v, w and «. One of 4 pos-
sibilities is true: t<ov<w<u, v<i<w<u, v<w<ti<u v<w
< % < t. We consider the case with v < w <t < %, the other cases being
similar. Since the equation {p, ¢, §> = s is uniquely solvable for g in @,

{(p, ), (g, w), (g, 1), P, ¢, 7> =8, u)}eb

and, of course, , ¥ and z belong to this block. Hence, every triple of elements
from @ x V belong to at least one block of b. On the other hand, by direct
count, there are -

(q(q—l)(q—2)
24

),,, blocks of type (1),

(g) (g) blocks of type (2),

6 (q(q—l)(q—2)
24

qs(v('v—l)(v—2)

)(;) blocks of type (3), and

24 ) blocks of type (4).
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Direct computation shows that the sum of these numbers is

[(vq)(vg—1)(vg—2)]/24 = |b].

This ecompletes the proof of the theorem.

We now modify the construction of (@ X V,b) by leaving blocks
of types (1), (2) and (3) unchanged and by replacing blocks of type (4)
as follows. Let

{r,y, 2, w}u {z,v,z, w}27 ey {2, 9, 2, w}t

be the t = v(v—1)(v—2)/24 blocks of b(v) and let

(@5 (o 01)y (@5 <y 902)y -y (@5 <y 9 0)

be any t = v(v—1)(v—2)/24 3-skeins. For every block {z,y, 2z, w}; and
every three elements p, g, se@, insert the block

{(p, ), (q,¥),(s,2), ({p, q, s>i"w)}7 where z <y <z < w.

Denote this new system by (@ x V, b*).
THEOREM 2. (Q X V, b*) is a Steiner quadruple system.

3. Non-isomorphic Steiner quadruple systems. In this section we use
the construction in Theorem 2 to produce large numbers of non-isomorphic
quadruple systems of a given order. The following observations are crucial.
A pair of 3-skeins (@, {,,>;) and (@, <, ,>,) are distinct provided that
{(p,q,8> #{(p,q,8), for at least one triple of elements p, ¢q, s in Q.
Since the operation table for a 3-skein is a latin cube, by starting with
any latin square based on @ = {1, 2, ..., ¢} and taking any cyeclic permuta-
tion on @, it is possible to construct a latin cube and, therefore, a 3-skein
(@, <{,,>) having this latin cube as its operation table. Since there are
at least q!(¢—1)!...2-1 (the produet of the first ¢ factorials) distinct
latin squares of order g [3], there are at least this many distinct latin
cubes and, therefore, distinct 3-skeins of order ¢q. We now are in a position
to prove the following theorem:

THEOREM 3. Let q and v be positive integers such that q,v =2 or 4
(mod 6). Then there are at least
(gl (g—1)!...2-1) . v(v—1)(v—2)

(qu)! ’ 24 ’
non-isomorphic Steiner quadruple systems of order qv.

Proof. A pair of quadruple systems (@, b,) and (@, b,) are distinct
provided that there is at least one block of b, which does not belong to b,.
Now, let (@, b(g)) and (V, b(v)) be quadruple systems of orders ¢ and v,
respectively. Let

(@5 <y 9015 (@5 <5 pD2)y ooy (€5 5y D)
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be any ¢t =wv(v—1)(v—2)/24 3-skeins. Since there are at least
ql(g—1)!. 2 1 distinct 3-skeins of order ¢, Theorem 2 gives at least
(g'(g—1)!. 1)‘ distinet quadruple systems of order gv. Since any
1som0rph1sm class can contain at most (gv)! of these quadruple systems,
the statement of the theorem follows.
4. Examples. Since 40 — 4-10 and there are quadruple systems of
order 4 and 10, Theorem 3 gives at least 1024 non-isomorphic quadruple
systems of order 40. Since 64 = 4-16, similar remarks produce at least
10255 non-isomorphic Steincr quadruple systems of order 64. Many more
examples of this type are possible. These two examples give considerably
stronger results than can be obtained by the results in [1].
Acknowledgement. The author wishes to thank Dr. B. Rokowska for
helpful comments.
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