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TWO SUFFICIENT CONDITIONS FOR THE MACLANE CLASS o

BY

G. P. KAPOOR (SHAMLI, INDIA)

Let o be the MacLane class of non-constant functions which are
analytic in |2{ < 1 and have asymptotic values in a dense set of points
of |2|"= 1. MacLane [3], p. 46, showed that if

M(r,f) =sup|f(2)] (0<r<1)

lel=r

for a non-constant function f(2) analytic in [2| < 1, then
1
(1) [(@—n)log* M (r,fdr < oo
-0

is sufficient to guarantee f(2) € &. MacLane [3], p. 51, further proved
that if

f(z) = Ma,a"
n=0
is such that, for some i (0 < A< %),
(2) log*la,l<n’  (n>m),
then f(z) € of. Thus, if order o of f(z), defined as

log*log*™ M (r, f)
= limsu
¢ f—»l/p _log(l—r)

’

satisfies 0 < ¢ < 2, then f(2) e .
Hornblower [2] weakened condition (1) and showed that if f(2) is
non-constant analytic in |2] < 1 such that

1
(3) [log*log* M (r, f)dr < oo,
1}

then f(z) e .
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The purpose of the present paper is to weaken (2) and to obtain
a sufficient condition on |a,/a,_,| such that

f(z) = Zanzl" (a, # 0 for all n)

n=0
is in the ‘class .

Our results imply that all non-constant functions, analytic in |2| < 1
and having finite order, are in the class /. Further, we construct an exam-
ple to show that there are functions of infinite order which also belong
to the class <.

LEMMA 1. Let f(2) be analytic and non-constant in |2| < 1 and let

M (r, f) = sup|f(2)].

12|=r

If, for some a (1< a<< o0),

) } as r—1,

logtlogtM(r,f) = 0{(1—7')_1 (log -

then f(2) € A.
Proof. It is easily seen that the hypothesis of the lemma implies

1
flog+log+M(r,f)dr< 0.
0

f(2) € o now follows from Hornblower’s result ([2], Theorem 1).
THEOREM 1. Let '

f@) = D e (l21<1)
n=0

be a non-constant function. If, for some B (1 < < o),
(4) log* |a,| = O{4,(log4,) " (logloga,)™"} as n — oo,

then f(2) € A. ’

Proof. Let us first observe that condition (4) implies that f(z) is
analytic in [2| < 1 and that there exist positive finite constants B and §
such that, for all n > §,

log* |a,| < BA,(logA,) *(loglogi,)".

We write
oo N

S 1)
5) M, Dol = Ylalr+ 3 gt Y el
1

n=0 n=0 n=S+ n=N+1
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where

1 1 ——\l/(ﬂ+l)
N = [exp {exp (-2—5 log —;) ” .

It follows that

Y e =0(1) as 1,

n=N+1
for

o0

D) ladr'n< D' exp{Bi,(logh,) " (loglog,)"}r""

n=N+1 n=N+1
hnd . p(N+1)/2
< Pt
= X 1_1‘]/2 9
n=N+1

and rVF2)(1 _y) 5 0 ag r 1 in view of the estimate

1= — (g 1) 10 1 2]

for the values of r sufficiently close to 1. Thus, by (5), for all r satisfying
rh<<r<l,

6) M(r,f)< o_(S)—I—Nma,x{exp (B4, (log4,) " (loglog4,)~") rl"] +o(1),

n=0

where ¢(8S) is a constant depending on S. Now, let
(7 g(x, r) = Bx(logz)~*(loglogz)~* 4 xlogr.

The maximum value of g(xz,r) occurs at the point x = x, = x,(7)
satisfying the equation

1
B(logz)~* (loglogx)~?{1 — (logx)~* — BB (logx)~' (loglogx)~'} = log -

It is easily seen that x,(r) > oo as r — 1, 8o that, for all » satisfying
r<r<1l we have

. -1 -8
2, (r) = exp {(1 + o(1)) B (log %) ( —loglog %) : .
Thus, by (7),

g(2, r) < Bay(logx,)~* (loglog,) " {1+ B B (logloga,)~'}.
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Using the estimate of z,(r), this estimate of g(x, r) yields

logg(z, r) < logz,+0(1)
, B L
= B(1+o0(1)) (log—%—) (—loglog—lr—) +0(1)

for all values of r sufficiently close to 1. Now it follows from (6) that,
as r—1,

. - -8
10g+M(r,f)<logN+exp{B(1+o(1))(10g%) ‘(_1oglog%) +o(1)}+

+

1\~ Y(+1)
515 )

+0(1) < exp (i log
1 -1 1 -8B
+ exp {B(l—l—o(l)) (log—r—) (—loglog7) +o(1)} +0(1)

-1 -8
=(1+o(1))exp{B(l—l—o(l))(log%) (—loglog%) +o(1)}.

Since the right-hand side expression in this inequélity i8 a positive
quantity, we have, as r -1,

-1 -8
log*logtM(r, f) < B(1+o(1))(log ) (—loglog—i—)- +o0(1)

- 0{(log%)_l(—loglog %)_,,} = 0{(1—r)"‘ (log =

=)

Thus, by Lemma 1, f (z.) € o and the proof of Theorem 1 is complete.

Remark. Since condition (4) follows from MacLane’s condition (2),
Theorem 1 provides an 1mprovement to MacLane’s result (see [3], p. 51).
Further, if -

f&)= Y a,"

n=0

is analytic in |2 <1 and has order g, then proceeding on the lines of
Beuermann [1] or MacLane [3] (p. 47) it is not difficult to prove that

| log™* log*
1+e . ,._.m,n log4,

It is clear from (8) that, for functions of finite (}rder, condition (4)
is satisfied for any § > 1. Thus, by Theorem 1, all non-constant functions,
analytic in |2| < 1 and having finite order, are in /. The same conclusion
also follows by Hornblower’s result, since a function analytic in 2| <1
and having finite order satisfies (3).
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An example of a function in the class & having infinite order can
easily be constructed by help of Theorem 1. Indeed, consider the function

9(2) = Y exp (4, (log,) %)™,

n=0
where 1, = 0 and {4,};>, i8 an increasing sequence of positive integers.
Since (4) is satisfied, we infer that g(z) is in the class «, and, by (8),
the order of ¢(2) is infinite.

Let us observe that whereas Theorem 1 provides an example of a fync-
tion of infinite order in the class ./ in terms of a Gap Taylor series, such
examples in the closed form can easily be constructed with the use of
Hornblower’s result. Indeed, the function

h(z) = exp(exp(1—2)"°) (0<a<1)

is in the class o in view of (3), and it can easily be seen that the order
of h(2) is infinite.
LEMMA 2. Let

f&) = > a,e™

be a non-constant function analytic in |2| < 1 and of order o. If

| a, Y(Ap41—%p)

p(n) = = —  for all n > n,,
I a’n+1 12
then
(9) 140 < max(l, ),
where

. loga
6 = limsup - .
n—>00 log((}'n_}‘n—l)/log-l- Ia'n/an—ll)
Proof. The condition y(n)> 1/e for all n > n, implies 0 < 0 < oo.

Let 6 < oco. For any & such that 6 < 6 < oo we have, for all n> N
= N (9),

a,

10g+ < (ln—z'n—l)}';l/a'

n—1

Therefore, if n > max(N,n,), then
(10)  logla,| < loglay|+ (Ays1—An)ARYT+ oo + (A=A, )) A5

n—1
=loglay|+ 4770 — 1 3 2, (851 — 42" — Ay A5
m=N+1
A

= loglay| + 239 — [ n(®)a(@ ") — iy iy}l
AN
where n(t) = 4, for 4, <t<4i,,, and m = N+1,...,n—1.
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Since
Zn ;'n
—1/s 1 C—1/8 1 @=1)/8  2(8-1)/
fn(t)d(t )> -5 ft @t = — <= (8- A,
v ANt

equation (10), for sufficiently large values of n, gives

o 1
(11)  loglay| <loglay| ++— A7V — ——— 283V — v A1
6—1 6—1
If 6< d< 1, then (11) and (8) imply o = 0, and so (9) obviously
holds. Hence, suppose that 1< 0 < §<< oo. It follows from (11) that,
for sufficiently large values of =,

0—1

logtlogtla,| < loga, +o(1),

which, in view of (8), implies the inequality
0 < i—1 .
1+p 0

Since this inequality holds for every é > 6, we have

0 0—1
< R
1+e 6

and 80 1+ o < 6. This completes the proof.
THEOREM 2. Let

fl@) = Y a2

be a non-constant function. If, for some n (0 < n < o),

a,

(12) 10g+! = O((A—Au_))A7") a8 m — oo,

Qp—1

then f(2) e .
Proof. It is easily seen that f(z) is analytic in |2| < 1. In view of

Lemma 2, condition (12) on |a,/a,_,| implies that f(z) is of finite order.
The assertion f(z) € o now follows from the remark following Theorem 1.
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