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SYMMETRIC OPERATIONS IN GROUPS
BY

ERNEST PLONKA (WROCLAW)

Introduction. We say that an operation f on A4 (i.e., a function
f: A™ — A) is generated by a set F of operations on A4, if f is a composition
of some operations belonging to F and some trivial operations (= identity
operations).

Let G be a group. We denote by A™ (@) the set of all operations
on the set G which are generated by the operations xy and x~!, or, in
other words, the set of all n-ary algebraic operations in G (see [1]), or
else, the set of all words of n variables ,, ..., #,. The set A™ (@) forms
a group, the multiplication being defined by juxtaposition. In this group
we distinguish the subgroup of all symmetric operations S™ (@), that

is the set of all words s(x,, ..., ,) for which the equation
8(Lyy Tay ooy Tp) = 8(Lo1y Tozy vvvy Typ)
holds for every z,, #,, ..., ,¢G and for all permutations ceS,.

The purpose of this paper is to study symmetric operations and the
possibilitity of generating the group operation xy by symmetric operations
of many (in general) variables. The class of groups in which this turns
out to be possible we denote by .

In section I we give a complete description of S™ (@) for nilpotent
groups of class 2 and for arbitrary =, and, in section II, for normal
products of Z, and Z, for n = 2.

In section ITI we investigate the class . It is clear that abelian
groups belong to ¢, and E. Marczewski (cf. [2]) raised a question whether
these are the only groups in . Unexpectedly enough, it turns out
(see section IV) that & contains the symmetric group on three letters S;.
This leaves an open question of giving a more accurate description of the
class o (P 684).

I. Nilpotent groups of class 2. Now we are going to determine the
symmetric operations in the nilpotent groups of class 2. Let us recall
the well-known identity

(1) =" y] = [, ¥"] = [=, y]".
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THEOREM 1. If G i3 a milpotent group of class 2, then operation
feA™(Q) is symmeiric if and only if

b
(2) f(@yy @gy oovy @) =505 .oy ] [®, ],
1<j<isn

where a, b are inlegers and
(3) a? = 2b(exp@).
Proof. Every word f in G is of the form

boo
J (@1, Tgy ...y @) = oflagt ... xgn ” [wi’mj] K
1<i<isn

and the condition f(z,,2s,...,%,) = f(®;, %1, %3, ..., ®,) together with
(1) yields

gt [ [, 210
1<i<isn

., , . b
= wglwgzwgs e TpM ” [@;, wp']b” ” [@;, a’l]bt2 n [@;, wz]bu [zy, x,]"2
3Igi<isn 3<i<n IKisn

: : bi —b
= @P2a1 w3 .. T ” [;, 5"'1]1’12 n [;, wl]bﬂ ” [@;y 2;1% [, @, M0,
3I<isn Iisn I<i<isn

Hence we have

(4) a, = as(exp@’),
(8) a,a, = 2b,,(exp@’),
6) ° by, = b (exp@), ¢ =f3{,4, ceny Mo

From the condition f(#y,...,%,) = f(®sy L3y ...y Ty, &) We infer
by (1) that

b
ap .o [ (@, 214
1<i<i<n

—_ b. b,
=aage... ggn-iapr ] (@415 #5401 n [®1, @, M
Ii<i<n 1<i<n

- - b. )
=girag! ... ggr-1 n [@;y 2 ] 1% n [(@ig1y Tjpa]? ” [0y 2],
2<i<n I<j<i<n 1<j<n

This yields
. (D 6, = 8y = ... = a,(exp@),
(8) b = by, (exp@) for 1<j<i<nm,

(9) bin+bnio1 = &_,18,(exp@’) for 2< i <.
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Now we shall prove the theorem by induction on n. For n» =1,2,3
our statement readily follows from (4), (5) and (6). Suppose that (4)-(9)
imply (2) and (3) for n—1 (n > 4). This means that

a, =a(exp@) for 1<i<n—1,
b; =b(exp@) for 1<j<i<n—1,
a? = 2b(exp@').

In view of (7) we have a, = a(exp@), while for k such that 1 < k < n
the relation b,; =b,_,;_,(exp@’) follows from (8). Now using (6) for
¢t = n as well as the induction hypothesis, we conclude that every n-ary
symmetric operation must be of the form (2), and (3) holds.

If a; = a(exp@), b; = b(exp@) for 1 < < j < n and (3) is satisfied,
then (4)-(9) are satisfied too. And since the cycles (1, 2) and (1,2, ...,7n)
generate the symmetric group 8,,f is symmetric. Thus the proof is
completed.

II. Normal products Z,Z,. Let us consider the normal product
Z,Z, of a cyclic group Z, (for a prime p > 2) and the group Z,, i.e. the
group of pairs (e, k), where ¢ = 4-1 or —1, keZ,, and the multiplication
being defined by the equality

(& k) (ny 1) = (en, nk+-1).

For the sake of brevity we write k instead of (1, ¥) and kb instead
of (—1,k),keZ,.

Let us begin with the two simple facts:

(i) The commutator subgroup of Z,Z, is Z,.

(ii) For every 0 <i<p and 0<j<<p there exisis precisely ome
automorphism ¢ of Z,Z, for which ¢(1) =1 and ¢(0b) = jb.

To verify (ii) define

(10) p(kb) = (j+K*i)b, (k) =k for 0<k<p,

and check that ¢ is an automorphism of Z,Z,.

Now we prove the following useful

LeEMMA. Let w, w'eA®(Z,Z,). If w,w' are equal on the pairs {1, 0>,
0,1, <1, 0b), <0b, 15, <Ob, 1b), <1b, 0b), then w,w’ are identical every-
where in Z,Z,.

Proof. Let
w = a1y’ atryfn, W =gy, g'my’m,

If w(l,0) =w'(1,0) and w(0,1) = w'(0,1), then

2% = v(®), JBi= D3 dp),
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and therefore for every k,1 with 0 << %k, | < p we have
w(k, 1) = k7517 = k¥1%% = w'(k, 1) (p).

Since w and w’' must commute with each automorphism ¢ of Z,Z,,
therefore if

p(1) =k, @(0b) =k'D,
then we have
w(k, k'b) =w'(k,k’'b) and w(k'b,k)=w'(k'b,Fk)
for all %, k' such that 0 <k < p,0< K < .
If 0 <k < k< p, then the mapping ¢ defined by
p(l) =k'—k, ¢@(0b) =kb
is, by (ii), an automorphism of Z,Z,, and
e(1b) = (k+Fk —k)b =Fk'D.
Hence
w(kb, k'b) = w'(kb, k'd) and w(k'b, kb) = w'(k'D, kb)

for any %, k' with 0 <k < k' < p.
Further, the mapping
(11) e: Z,Z, > Z,Z,,

where e(k) = 0, and e(kb) = 0b for 0 < k < p, is an endomorphism of
ZyZ,, and thus

ew(l, 0b) = w(0, 0b) = w’'(0, 0b) = ew’(1, OD),
ew(0b,1) = w(0b, 0) = w’'(0b, 0) = ew’(0b, 1).
Hence
w(0, kb) = w’'(0,kb) and w(kb,0) = w'(kb, 0)

because kb (1 < k < p) is an image of 0b by an automorphism. Finally,
we have

w(kb, kb) = w(kb, 0)w(0, kb) = w’ (kb, 0)w’ (0, kb) = w’' (kb, kb)

for all & (0 <k < p).

The following theorem gives a description of the symmetric binary
words in Z,Z,. |

THEOREM 2. We have
S (Z,Z,) = gp{w,, u} =~ Z,x Z,Z,,
where -
(12) wy (@, y) = 2yly, 1?2, w(x,y) =2y



SYMMETRIC OPERATIONS IN GROUPS 183

Proof. Sin:ze
wy (Y, 2) =y, yI*" = ayy, 2]~ = ay[y, )P = w, (2, y),
u(y,r) = y*a? = 2*y? = u(z,y),
we get the inclusion
gp{w,, u} =« S(Z,Z,).
Now we show that if seS®(Z,Z,), then
(13) $(0b, 1b) = 0.
If s(w,y) = x1y”1 ... 2°2yP», then from s(0, 0b) = s(0b, 0) we obtain
Z a; = 2.3&(2)-
Consequently,
(14) 5(0b, 0b) = 0bZ%0b™% — Qp*i+Zhi — ¢,

Because s commutes with the endomorphism ¢ defined in (11), the
equality (14) implies
0 = s(0b, 0b) = s(e(0b), e(1b)) = es(0b, 1b),

and thus s(0b, 1b)Z,.
Let us suppose that s(0b,1d) = k, and consider an automorphism
p(1) = —1, 9(0b) = 1b. Hence we get

¢(1b) = @(00-1) = ¢(0d) - ¢(1) = 1b-(—1) = 0b
and, furthermore,
k = 8(0b, 1b) = s(1b, 0b) = s(p(0d), ¢(1d)) = ¢ (k).

One can see that the only keZ, for which the equality ¢(k) =%
holds is equal to 0. Therefore s(0b, 1b) = 0.
Let us consider the mapping a: 8% (Z,Z,) - Z,xZ,Z, defined by

a(s) = <s(1,0), s(1, 0b)>.
Since
a(8,8;) = <8:82(1,0), 8,8,(1, 0b)>
= (8:(1, 0), 81(1, 0b)} (s,(1, 0), 85(1, 0b)> = a(s;)a(s,),

a is a homomorphism. Moreover, since s(0b, 15) = 0 for all s¢S®, therefore,
if s, #s,, then, by the lemma, either s,(1,0) # s,(1,0) or s,(1,0b)
#* 8,(1, 0b). This means that the mapping a is one-to-one. Observe now
that

a(w,) = <1,0b> and a(u) = <2,2)
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are the generators of Z,xZ,Z,, and therefore
gp{w,, u} = SNZ,2,) ~Z,XZ,Z,.
This completes the proof.

III. The class ¢ .

THEOREM 3. The class X s closed under taking subgroups, homo-
morphism images, and direct powers.

Proof. Observe that if s is a symmetric operation in @, then s is
symmetric in any group of the variety of groups, i.e. in the HSP(G)
generated by G. If G ¢« ¢, then the operation xy is generated by symmetric
operations, and the equation expressing this fact is satisfied in any group
of HSP(@Q).

THEOREM 4. If a nilpotent group G belongs to A, then G is abelian.

Proof. In view of Theorem 3 it is sufficient to prove Theorem 4
for nilpotent group of class 2. To do this we show(!) that if seS™ (@),
then

(15) s(@rYy .oy @7t) = 8(@yy .en, @)t

By theorem 1,

(16)  s(@1y..., @) =a5...a5 [] [@, %], where a® = 2b(exp@),

1<i<i<n
whence
- ~b - —
§STH®yy ooy @) =[] (@@l ar® ..
1<j<i<n
=or%. a1 %% [ (o]0,
1<i<isn 1<i<i<n

Hence, by (16), we get (15).

If algebraic operations s,,...,$; satisfy (15), then so does the
operation s,(8,,...,8;). Hence, since Ge ., we have 'y~ = (zy)~’,
which implies that G is abelian.

Theorems 3 and 4 produce an aboundance of groups which are not
in . For example, we have the following

COROLLARY. If a finite group G has a non-abelian Sylov subgroup,
then G is mot in A". Consequently, S, ¢ A~ for n > 4.

IV. A non-abelian group in 2. In this section we show that S;e. .
THEOREM 5. In Z;Z, we have

(17) ry = wa[wsu(wau(wy Y), y4)7 wa(wg(wy Y),8(z,y, w))]7

(*) The idea of this proof is due to S. Fajtlowicz.
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where ws(z,y) = vyl[z,y], u(z,y) = 2?y?% and s(z,y,2) = [2,y,2]X
X[z, Y, 2] 18 a ternary symmetric operation in Z3Z,. Consequently, ZsZ ¢ A .

Proof. First we check that s is symmetric. In fact, by virtue of
Jacobi identity valid in meta-abelian groups, we have

s(y,x,2) =[2,2,y]lly,x,2] = [w,?/,zlz[m,?hz]?[y,z,w]z
= [2,y, z][®,y,2] = s(x, ¥, 2),

8(y,2,2) = [x,2,y][y, 2, 2] = [y, 2, x]lly, ©,2]*[2, ¥, x]*
= [2,y, 2]z, y,2] =s(z,y,2).
To prove (17) we apply lemma and verify that:

R(0,1) = wa(wau((), 1), ws(1, O)) = wy(0, 1) = L(0, 1),
R(1,0) = ws(wsu(0,0), ws(1,0)) = wy(0,1) = L(1, 0),
R(1, 0b) = wy(wsu(2b, 0), ws(0, 0)) = wy(2b, 0) = 2b = L(1, 0b),
R(0b, 1) = wa(wgu(2b, 1), ws(0, 1)) = w,(1d,1) = 1b = L(0b,1),
R(0b, 1b) = ws(wsu(0, 0), ws(0, 1)) = ws(0,1) = L(0b, 1b),
R(1b, 0b) = wy(wau (0, 0), ws(0, 2)) = w,(0,2) = L(1b, 0b).
This completes the proof.

It is of interest that in S; the operation xy is not generated by the set
of binary symmetric operations. More precisely, we prove

THEOREM 6. Every algebraic binary operation f from the algebra
N =<Z,Z,; S" U S®y
satisfies
(18) f(éb, jb)e{0,0b,1b, ..., (p—1)b} =B, 0<4,j<p.

Consequently, the operation zy does not belong to A® ().

Proof. Since every element of B is of order < 2, every unary opera-
tion maps B into B. If feS®(Z,Z,), then, by Theorem 2, the operation
f-is of the form wfw' with 0 <k < 2p, 0 <1< p. We have

w,(ib, jb) = ib-jb-[jb, ]I = (j—i)[(i—j)(i—34)1®*V"* =0,

u(tb, jb) = 0.

Suppose now that f; and f, satisfy (18) and consider the superpositions
w, (f1, f2) and u(f,,f.). We see that

wp(fl('ibyjb)1f2(ib’jb))€B7

u(fl(ib’jb)yfz(ib’jb)) =0,
whence ‘

wzul(fl(ib7jb)7f2(ib7jb))eBa
and (18) follows.
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Since ¢b-jb = j— 1, the operation xy cannot be an algebraic opera-
tion in A.

I wish to express my gratitude to Andrzej Hulanicki for his help
in preparation of this paper.

The results of this paper were announced in [3].
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