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The existence of Borel sets of exact class in various metric spaces
is classical and well known. In [2], the authors give an elegant construction
of sets M, (a < w,) of exact multiplicative class a in the Hilbert cube.
Their construction can also be extended to the Cantor set ¢, from which
it follows that every metric space containing C contains Borel sets of
exact class for each a < w,. Their construction appeals to the Brouwer
fixed-point theorem for the Hilbert cube. The purpose of this note is to
show how a similar construction can be effected appealing only to the
elementary contraction mapping theorem. For convenience, we carry out
our construction in the Cantor set C rather than the Hilbert cube.

Recall that the family B of Borel sets of a metrizable space X can
be constructed by transfinite induction. Let

®, = {G: G is open in X},

and for 0 < a < w, let
6, ={G: @ = L @, with @, €6, §, < a},
n=1

where L 'sta.nds for union if a is even and for intersection if a is odd. Then
B = J{6,: a < w,}.

The family B may also be constructed as | {§,: ¢ < w,}, where
T = {X\Q: G €B,}.

For each a < w,, whichever collection, ®, or &,, is closed under count-
able intersections, is called the collection of Borel sets of multiplicative class
a; the other collection comprises the sets of additive class a. A set which
is of multiplicative (additive) class a but not of additive (multiplicative)
class a is said to be of exact class a. More details about Borel sets may be
found in [3].
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We represent the Cantor set by {0,1}Y, where N = {1,2,...};
its metric is given by

d@,y) = D Io(i)—y (@) -2~".

We denote the point (0,0, ...) by 0.

LeMMA 1. Let (X, o) be a non-empty, compact, 0-dimensional metric
space. If F 8 closed in X and 0 < ¢ < 1, then there is a function f: X —->C
such that

f7H0) =F and d(f(2), f(y)) < eelz, ¥)

Jor every x,y e X.

Proof. Assume that F is not open (or else the proof is easy). We can
write

F - QG'-,

where the @,’s are clopen sets such that G, = X and G; 2 G, . Let
C; =G,\G;,, and ¢ =¢(C;Gy,)>0.
Let k(0) be the least positive integer such that

(o]
—-n .
27" K egys
n=k(0)+1

for ¢ > 1 let k(¢) be the least positive integer greater than k(¢ —1) and
such that

o]
-

27" < eey.

n=k(@@)+1

For x ¢ F pick the least ¢ such that x € C;. Put f(z)(n) = 0 for 1 <n

< k(?), and f(z)(n) = 1 otherwise. For z € F' let f(x) =0. Then f~'(0)

= F. To check the desired inequality, suppose (the other cases being

trivial) that ¢ is the least integer such that x € C;, j the least such that
y € 0;, and that i > j. Then !

d(f(@), @) = D 1f(@)(n)—F(y)(m)|-27"

= D f@m—f@mi-2"< D 27" <.
n=k(j)+1 n=k()+1

Since y € C; and # € @,,,, we have ¢ < ¢(2, y), and so d(f(»), f(y))
< ee(z, y).
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In C, we now define sets M, of multiplicative class a for each a < w,.
For each a, a corresponding set A, = C\ M, (of additive class a) is also
defined. Let M, = {0} and A, = C\M,.

Assume that, for each y < a < w,, sets M, and A, = C\ M, are defined.
Partition N into infinitely many infinite sets N; = {j,: k¥ =1,2,...},
where j, < j,,.1. Define o;: N; > N by o0;(j,) = k. Then o; is an order
isomorphism and o;(j,) < j;. Let P; = {0,1}"i have the metric

. . —oy(4)
&z, y) = Y la@)—y@)-2 .
%'ENJ'
Then ¢;: (P;, d;) - (C, d) given by ¢;(x)(k) = (j,) i8 an isometry,
since

d(g;(@), 95(9) = D Iy (@) (6) — 5 (y) (5)] -2

i=1
= Yz —yG)-27 = Y () —y@)l-27*
i=1 JieN;
= Y -y6)-2"" = g, .
usNJ

For a = y+1, let
={xeC: x| N;eqg;'(4,) =A{, for j =1,2,...}.

If a is a limit ordinal, let 8 — n(f) be a bijection from [0, a) to N
and let

= {# € C: @ | N, € pps)(4s) = A3P for all f < a}.
In either case, let A, = C\ M. In the first case, M, is homeomorphic to
A, xA, % ...c C%

and, in the second case, to

I—IA,3 c (%,

B<a
Thus M, is homeomorphic to a product of sets of multiplicative
class a, and therefore [3] is of multiplicative class a.

LevmA 2. Let (X, o) be a non-empty, compact, 0-dimensional melric
space. If M < X is of multiplicative class a and 0 < e < 1, then there is
a map f,: X — C such that

fUM) =M and  d(f(2), fu(y)) < celx, )

for all z,y € X. If M 18 of additive class a, then the analogous conclusion,
with A, replacing M,, holds.
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Proof. For each ordinal less than w,, the conclusion for additive
sets follows from the earlier part simply by taking complements.

The case a = 0 is Lemma 1. Suppose that Lemma 2 holds for all y < a
< o,. Since o; (as defined earlier) is an isometry, it follows from the defini-
tion of A4, that if C; is a set of additive class < ain X and 0 <¢; <1,

then there is a function f,;: X — P; such that
frn(4)) =G and  &(f,;(2), f,)(¥) < &0(®, 9).

We now apply this fact.
If a = y+1, write

.M = n Cj,
i=1
where C; is of additive class y. Write

(o]
£ = 281’ where 0 < g < 1.
j=1

For each j we have, by induction, the f,; described above. Define
f.: X — C by f,(#)(3) = f,;(®)(4) for i € N;. Then f;'(M,) = M and

d(fu@), f@)) = D) ful@)(n) —fu(y)(n)-27"

n=1

= 3 Y ifp @) @)~y @) @) -27*

ji=1 ‘ENj

<> S ifp@@ —faw 62",

j=1 ieNy

since o0;(¢) < ¢. Consequently,

d(fa(w)’fa(y)) < Zdj(fy(j)(m)’fy(j)(y)) < 2859(5‘7; y) = eo(®, ¥).
j=1 Jj=1

If a is a limit ordinal, write
M= {Crip): B< a}y

where, as before, 8 — n(p) is a bijection between [0, a) and N, and where
each O, is of additive class < a. Write

& = Z{Bn(m: ﬁ < a}, where 0 < Sn(ﬁ) <1.

For each B < a the induction hypothesis gives a function f3®):

( f;t(ﬂ))-l( A";(ﬂ)) = an and d,,(p) (f,.(p)(w)’fn(p) (?I)) < gyp (@, y).
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Define f,: X — C by f,(#)(¢) = f3'? () (i) for i € N,;. Then f;'(M,)
= M, and the verification of the desired inequality proceeds as before.
THEOREM. The Cantor set C contains sets of exact class a for each a < w,.

Proof. The set M, is of multiplicative class a. If M, were of additive
class a, then Lemma 2 would give a function f,: (C, d) — (C, d) such that

fH M) =4, and  @(fu(@), f.W) < 3d(@,9).

Since C is compact, the contraction mapping theorem provides a
fixed point p for f; but then pe M,Nn4, = @.

CorOLLARY. If X i8 a melrizable space containing C topologically,
then X has Borel sets of exact class a for every a < w,.

Remarks. The corollary covers, for example, all metrizable spaces
which contain a non-empty, dense in itself, completely metrizable subspace.
These include, in particular, all uncountable complete, separable metric
spaces. More generally, the corollary also covers, by a theorem of Elkin
[1], every metric absolute N,-analytic set (and hence every metric absolute
Borel set) which is not o-discrete, i.e., which is not a countable union
of discrete sets.
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