XLII

JEU DE CHOQUET

PAR

E. PORADA (WROCŁAW)

Introduction. Certaines propriétés d'un espace topologique peuvent être exprimées en termes de la théorie des jeux. Quelques problèmes y ont été posés il y a une disaine d'années par le Professeur Czesław Ryll-Nardzewski. Le jeu de Banach-Mazur peut servir à caractériser les ensembles ayant la propriété de Baire (cf. [2]). Ryll-Nardzewski a exprimé la conjecture qu'il soit possible de caractériser d'une façon analogue les espaces complets au sens de Čech et, en modifiant légèrement le jeu de Banach-Mazur, il a défini un nouveau jeu qu'il a appelé jeu de Choquet. J'ai présenté quelques remarques ci-dessus au séminaire du Professeur Edward Marczewski, qui m'a conseillé de les publier. Ce n'est qu'à présent que je me suis décidé à suivre son conseil quoique je n'aie pas encore réussi de résoudre complètement les problèmes dont il s'agissait.

1. Le jeu de Choquet. Soit (X, τ_X) un espace topologique, τ_X étant la famille des ouverts dans X. Soit encore Y une partie de X. La topologie τ_Y dans Y est celle induite de (X, τ_X) .

Deux personnes A et B jouent comme il suit: d'abord le joueur A choisit un point $y_0 \in Y$ et un ouvert $U_0 \in \tau_X$ tel que $y_0 \in U_0$. Le couple (U_0, y_0) s'appelle choix initial. En premier coup le joueur B choisit un ouvert $V_1 \subset U_0$ contenant le point y_0 et A y répond en choisissant un point $y_1 \in V_1 \cap Y$ et également un voisinage U_1 du point y_1 inclu dans V_1 . En deuxième coup le joueur B choisit son ouvert V_2 tel que $y_1 \in V_2 \subset U_1$ et ensuite A tire un point $y_2 \in V_2 \cap Y$; etc. A la fin du jeu, après une infinité de coups, on a la suite

$$(U_0, y_0), V_1, (U_1, y_1), V_2, (U_2, y_2), \dots$$

appelée partie du jeu. Evidemment

$$\bigcap_{n=1}^{\infty} U_n = \bigcap_{n=1}^{\infty} V_n.$$

Notons cette intersection par R en l'appelant résultat de la partie. Si $R \neq \emptyset$ et $R \subset A$, le joueur B a gagné; sinon c'est A qui a gagné. Le jeu ainsi défini s'appelle jeu de Choquet sur l'espace X. Notons le Cho $_X(Y)$.

2. La stratégie simple. Désignons par τ_X^0 l'ensemble des couples (U, y), où $U \in \tau_X$ et $y \in U \cap Y$. La stratégie simple du joueur B est une fonction $\Psi \colon \tau_X^0 \to \tau_X$ telle que

$$y \in \Psi(U, y) \subset U, \quad (U, y) \in \tau_X^0.$$

La stratégie simple Ψ est dite victorieuse lorsque les conditions

$$(U_n, y_n) \in \tau_X^0, \quad U_{n+1} \subseteq \Psi(U_n, y_n), \quad n = 1, 2, \dots$$

entraînent $R \neq \emptyset$ et $R \subseteq Y$. Dans la suite nous utiliserons l'abréviation "stratégie SV" pour "stratégie simple et victorieuse".

2.1. LEMME. Soit Y un ensemble G_δ dans un espace compact de Hausdorff X. Alors, le joueur B possède une stratégie SV dans chacun des jeux $\operatorname{Cho}_X(Y)$ et $\operatorname{Cho}_Y(Y)$.

Démonstration. Soit $U \mapsto \tilde{U}$ une application de τ_X en τ_X telle que $\tilde{U} \cap Y = U$ et $(U, y) \mapsto U'_y$ une application de τ_X^0 en τ_X telle que $y \in U'_y \subset \overline{U'_y} \subset U$. D'après l'hypothèse

$$Y = \bigcap_{n=1}^{\infty} G_n$$
, où $G_n \in \tau_X$, $n = 1, 2, ...$

Nous pouvons admettre que $X = G_1 \supset G_2 \supset ... \supset G_{\infty} = Y$. Soit encore, pour $A \subset X$,

$$N(A) = \{\sup n \colon \overline{A} \subset G_n\}.$$

Posons

$$\Psi(U,y) = (\tilde{U} \cap G_{N(U)+1})'_y \cap Y, \quad (U,y) \in \tau_Y^0.$$

Nous allons démontrer que Ψ est une stratégie SV pour le joueur B dans le jeu $\operatorname{Cho}_Y(Y)$. Evidemment $y \in \Psi(U,y) \subset U$. Donc il faut montrer que Ψ est victorieuse. Supposons alors que

$$U_n \in \tau_Y, \quad y_n \in Y \quad \text{ et } \quad y_{n+1} \in U_{n+1} \subset \Psi(U_n, y_n), \quad n = 1, 2, \dots$$

Désignons l'ensemble $(U_n \cap G_{N(U_n)+1})'_{\nu_n}$ par W_n . Puisque $\{W_n \cap Y\}$ est une suite décroissante d'ensembles non vides, alors l'intersection de toute sous-famille finie de $\{\overline{W_n}\}_{n=1}^{\infty}$ est non vide, donc

$$\bigcap_{n=1}^{\infty} \overline{W_n} \neq \emptyset.$$

En remarquant que

$$\overline{W_n} \cap Y \subset (\tilde{U}_n \cap G_{N(U_n)+1}) \cap Y = U_n \subset \Psi(U_{n-1}, y_{n-1}) = W_{n-1} \cap Y,$$

$$n = 2, 3, \ldots,$$

nous aurons

$$\bigcap_{n=1}^{\infty} \overline{W_n} \cap Y = \bigcap_{n=1}^{\infty} (\overline{W_n} \cap Y) = \bigcap_{n=1}^{\infty} (W_n \cap Y) = \bigcap_{n=1}^{\infty} \Psi(U_n, y_n) = R.$$

Pour que le résultat R ne soit pas vide il suffit de prouver que

$$(2.1) \qquad \bigcap_{n=1}^{\infty} \overline{W_n} \subset Y.$$

On établit sans peine que $N(U_n) \ge n$ et comme $\overline{W_n} \subset G_{N(U_n)+1}$, on a (2.1), ce qui prouve que Ψ est une stratégie SV.

Pour obtenir une stratégie SV pour B dans le jeu $Cho_X(Y)$ on pose

$$\Phi(U,y) = U_y' \cap G_{N(U)+1}.$$

Il est très facile à voir qu'en employant la stratégie Φ , ainsi définie, B gagne toujours.

2.2. COROLLAIRE. Si (Y, τ_Y) est un espace complètement régulier et complet au sens de Čech, alors le joueur B a une stratégie SV dans le jeu $Cho_Y(Y)$.

Démonstration. En effet, une des définitions possibles d'espace Y complet au sens de Čech est la suivante: Y est un G_{δ} absolu, c'est-à-dire, il est un ensemble G_{δ} dans tout espace qui en est un compactifié, en particulier dans le compactifié de Čech $X = \beta Y$. Ainsi, on n'a qu'à appliquer le lemme 2.1.

- 3. Jeu de Choquet dans un espace métrique. Il se pose la question si le corollaire 2.2 admet le réciproque. Nous donnerons une réponse affirmative pour Y métrisable en prouvant le théorème suivant:
- 3.1. THÉORÈME. Soit (Y, d) un espace métrique métrisé par la distance d. Admettons que le joueur B a une stratégie simple et victorieuse Ψ dans le jeu $Cho_Y(Y)$. Alors, Y est un ensemble G_δ dans son complété (X, \tilde{d}) , c'est-à-dire il est complet pour le choix convenable de la distance.

Démonstration. Nous définissons une stratégie Φ du joueur B dans le jeu $Cho_X(Y)$ en choisissant, pour un ouvert $U \subseteq X$ et pour un $y \in U \cap Y$, un ouvert $\Phi(U, y) \subseteq X$ tel que

$$1^{\circ} y \in \Phi(U, y) \cap Y \subseteq \Psi(U \cap Y, y),$$

 $2^{\circ} \delta(\Phi(U,y)) \leq \min\{1, \frac{1}{2}\delta(U)\},$ où $\delta(\cdot)$ signifie le diamètre d'un ensemble dans X.

Nous allons prouver que Φ est victorieuse. Soit donc (U_0, y_0) , $\Phi(U_0, y_0)$, (U_1, y_1) , ... une partie et soit

$$R=\bigcap_{n=0}^{\infty}U_{n}.$$

On a

$$U_0 \cap Y \supset \Psi(U_0 \cap Y, y_0) \supset \Phi(U_0, y_0) \cap Y \supset U_1 \cap Y \supset \ldots,$$

done $U_{n+1} \cap Y \supset \Psi(U_n \cap Y, y_n), \quad n = 1, 2, \dots, \text{ et}$

$$R \cap Y = \bigcap_{n=0}^{\infty} \Psi(U_n \cap Y, y_n).$$

En vertu du fait que la stratégie Y est victorieuse et que $\delta(\Phi(U_n, y_n)) \le 1/2^{n-1}$ on conclut $R \cap Y = \{y\}$, où $y \in Y$. Comme $R = \{y\} \subset Y$, la stratégie Φ est bien victorieuse. Par conséquent, elle a la propriété suivante: quel que soit $x \in X \setminus Y$, il existe un voisinage W du point x tel que pour les ouverts $U \subset W$ et $y \in U \cap Y$ on ait $x \notin \Phi(U, y)$. Car, en supposant que pour un voisinage arbitrairement petit il puisse arriver que $x \in \Phi(U, y)$, la stratégie ne serait plus victorieuse. En effet, il est évident que dans ce cas le joueur A pourrait faire son jeu de manière à rendre le résultat égal à $\{x\}$.

Nous allons prouver maintenant que Y est un G_{δ} dans X. Soit β_n le recouvrement de X composé de toutes les boules dans X de rayon $1/2^n$ et

$$G_n = \bigcup_{U \in \beta_n, y \in U \cap Y} \Phi(U, y).$$

Alors, G_n est un ouvert contenant Y. Montrons que

$$(3.1) Y = \bigcap_{n=1}^{\infty} G_n.$$

Soit donc $x \notin Y$ et W le voisinage de x tel que pour $U \subseteq W$ et $y \in U \cap Y$ on ait $x \notin \Phi(U, y)$. Ainsi, pour n assez grand et pour un $U \in \beta_n$, ou bien $x \notin U$, ou bien $x \notin \Phi(U, y)$, d'où l'on conclut que $x \notin G_n$. Il en résulte (3.1), ce qui achève la démonstration.

4. Le jeu de Banach-Mazur. Rappelons que dans le jeu de Banach-Mazur deux joueurs A et B jouent sur un espace polonais X, un sous-ensemble $Y \subset X$ étant donné. Les joueurs choisissent tour à tour les ouverts $U_0, V_1, U_1, V_2, U_2, \ldots$ en formant une suite déscendante appelée partie du jeu. Le joueur B a gagné si le résultat R de la partie, défini comme $\bigcap_{n=1}^{\infty} V_n$, est non vide et contenu dans Y.

Soit β la famille des boules dans X. Une fonction $\Phi: \beta \to \beta$ telle que $\Phi(U) \subset U$ s'appelle stratégie simple et victorieuse (la stratégie SV) pour le joueur B si, en posant $V_n = \Phi(U_n)$, B gagne toujours.

Notons le jeu par $BM_X(Y)$. On prouve que le joueur B a une stratégie SV si et seulement si Y contient une partie Y^* qui est un G_δ dense dans X, c'est-à-dire, si $X \setminus Y$ est de I^e catégorie de Baire (cf. [1], Chapter 6).

Parmi les problèmes qui s'imposent par le jeu de Banach-Mazur celui de la détermination semble le plus intéressant. La symétrie des rôles des joueurs A et B (abstraction faite de ce que A commence le jeu) a pour conséquence que la stratégie SV du joueur A existe si et seulement si X est de I° catégorie de Baire dans un ouvert non vide $U_0 \subset Y$. Ainsi, au moyen des résultats classiques concernant les espaces polonais, on montre qu'une stratégie SV pour un des joueurs existe seulement si Y a la propriété de Baire. Donc, dans le cas contraire le jeu $BM_X(Y)$ n'est pas déterminé.

- 5. La stratégie du joueur A. Dans cette section nous gardons l'hypothèse que X soit un espace polonais. Dans le jeu $\operatorname{Cho}_X(Y)$, $Y \subset X$, les rôles des joueurs ne sont plus symétriques. Considérons le problème d'existence d'une stratégie SV pour le joueur A. Une telle stratégie n'est que
 - (i) le choix initial $(U_0, y_0), y_0 \in U_0 \cap Y$,
- (ii) une fonction \mathcal{E} qui assigne à tout ouvert $V \subset X$ un couple $\mathcal{E}(V) = (V^s, y_v)$, ou V^s est un ouvert dans V et $y_v \in V^s \cap Y$.

Voici un exemple important. Soit $N_* = \{1, 2, ..., \infty\}$ le compactifié de l'ensemble des nombres naturels N par un point ∞ . Evidemment N_* est un espace polonais compact; il en est de même pour le produit de Tychonoff

$$N_*^{\omega} = \{ \sigma = (\sigma_1, \sigma_2, \ldots) \colon \sigma_i \in N_*, i = 1, 2, \ldots \}.$$

Soit

$$S = \{ \sigma \in N_*^{\omega} \colon \forall (\sigma_n = \infty \Rightarrow \sigma_i = \infty \text{ pour } i \geqslant n) \}.$$

On voit facilement que S est un sous-espace fermé dans N_*^{ω} , donc un compact. Enfin, soit

$$T = \{\sigma \in S : \sigma_i = \infty \text{ pour } i \text{ assez grand}\}.$$

Notons l'élément $\sigma = (\sigma_1, ..., \sigma_n, \infty, \infty, ...)$, où $\sigma_i \neq \infty$, par $\langle \sigma_1 ... \sigma_n \rangle$. T est un ensemble sans point isolé et dense dans S. On a

(5.1)
$$\lim_{\sigma_{n+1}\to\infty}\langle\sigma_1\ldots\sigma_n\rangle=\langle\sigma_1\ldots\sigma_n\rangle$$

quel que soit $\langle \sigma_1 \ldots \sigma_n \rangle$.

5.1. LEMME. Le joueur A a une stratégie SV dans le jeu $Cho_S(T)$.

Démonstration. Notons $T_0 = \{(\infty, \infty, ...)\}$ et $T_n = \{\langle \sigma_1 ... \sigma_n \rangle\}$. Alors, T_n est un ensemble isolé et, d'après (5.1),

$$\overline{T_{n+1}} = T_n \cup T_{n-1} \cup \ldots \cup T_0.$$

Pour $E \subseteq S$, $E \cap T \neq \emptyset$, soit $M(E) = \min\{n : E \cap T_n \neq \emptyset\}$. Le coup initial du joueur A sera

$$U_0 = S$$
, $t_0 = (\infty, \infty, \ldots)$.

Parsuite, V étant un coup de B, le joueur A choisira un point $t_V \in V \cap T_{M(V)+1}$, ce qui est possible d'après (5.2), et un ouvert V^B tel que

$$1^{\circ} \ t_{V} \in V^{S} \subset \overline{V^{S}} \subset V,$$

$$2^{\circ} \delta(V^{\mathbf{z}}) \leqslant \frac{1}{2} \delta(V),$$

$$3^{\circ} V^{\mathcal{B}} \cap T_{M(V)+1} = \{t_{V}\}.$$

Soit maintenant $(U_0, t_0), V_1, (U_1, t_1), V_2, \ldots$ une partie du jeu dans laquelle le joueur A a employé la stratégie Ξ . Il est évident que le résultat R de la partie contient un point

$$\sigma = (\sigma_1, \sigma_2, \ldots) = \lim_{n \to \infty} t_n$$

et que
$$t_n = \langle \sigma_1 \dots \sigma_n \rangle$$
, $n = 1, 2, \dots$ Donc $\sigma \notin T$.

5.2. COROLLAIRE. Soit (X, d) un espace métrique et $Y \subset X$. Supposons qu'il existe un homéomorphisme h de S sur une partie $h(S) \subset X$ tel que $h(S) \cap Y = h(T)$. Alors, A a une stratégie SV dans le jeu $Cho_X(Y)$.

Démonstration. Pour simplifier l'écriture on suppose que S soit un sous-espace de (X,d) et que $S \cap Y = T$. Soit E la stratégie SV du joueur B dans le jeu $\operatorname{Cho}_S(T)$ telle que $\delta(V^S) \leqslant \frac{1}{2}\delta(V)$. U étant un ouvert dans S, notons par \tilde{U} un ouvert dans X tel que $\tilde{U} \cap S = U$ et $\delta(\tilde{U}) \leqslant 2\delta(U)$. Pour les ouverts $V \subset X$, $V \cap S \neq \emptyset$, posons

Soit $U_0 = \tilde{S}$, $t_0 = (\infty, \infty, ...)$ le choix initial et

$$(U_0, t_0), V_1, (U_1, t_1), V_2, \dots$$

une partie dans le jeu $Cho_X(Y)$ dans laquelle la stratégie \mathcal{Z}_1 a été employée; alors

$$U_n \cap S = V_n^{\varepsilon_1} \cap S = (V_n \cap S)^{\varepsilon}.$$

Il s'en suit que

$$(5.4) (U_0 \cap S, t_0), V_1 \cap S, (U_1 \cap S, t_1), V_2 \cap S, \dots$$

est une partie du jeu ${
m Cho}_S(T)$ dans laquelle le joueur A a employé la stratégie ${\cal E}.$ Compte tenu du fait que

$$\lim_{n\to\infty}\delta(V_n\cap S)=0,$$

le résultat de la partie (5.4) se compose d'un seul point σ qui n'appartient pas à T. Le résultat R de la partie (5.3) est le même, donc $R = \{\sigma\} \subset S \setminus T \subset X \setminus Y$. En résumant, \mathcal{E}_1 est une stratégie SV pour le joueur A dans le jeu $\operatorname{Cho}_X(Y)$.

5.3. THÉORÈME. Soit (X, d) un espace métrique et $Y \subseteq X$. Le joueur A possède une stratégie simple et victorieuse dans le jeu $\operatorname{Cho}_X(Y)$ si et seulement si il existe un homéomorphisme h de S sur une partie $h(S) \subseteq X$ tel que $h(S) \cap Y = h(T)$.

Démonstration. Le corollaire 5.2 entraîne la suffisance. Alors, il reste à trouver l'homéomorphisme h en supposant que le joueur A ait une stratégie SV dans le jeu $Cho_X(Y)$. Notons la par \mathcal{E} .

Nous allons faire correspondre à chaque système fini de nombres naturels $\{\sigma_1, \ldots, \sigma_n\}$ un point $y_n^{\sigma_1 \ldots \sigma_n} \in Y$. On procède par récurrence par rapport à n. Soit (U_0, y_0) le choix initial du joueur A. On pose

$$h((\infty, \infty, \ldots)) = y_0.$$

Il existe un voisinage V_1^1 du point y_0 arbitrairement petit et tel que $y_0 \notin (V_1^1)^S$. Or, sinon, B pourrait facilement gagner en choisissant toujours les voisinages du point y_0 aussi petits pour que le résultat de la partie se réduise à $\{y_0\}$. Notons $U_1^1 = (V_1^1)^S$ et $y_1^1 = y_{V_1^1}$; donc $\mathcal{E}(V_1^1) = (U_1^1, y_1^1)$. Parsuite, on peut trouver un voisinage V_1^2 du point y_0 tel que $y_1^1 \in V_1^2$ et $y_0 \notin (V_1^2)^S$. On note $U_1^2 = (V_1^2)^S$ et $y_1^2 = y_{V_1^2}$, c'est-à-dire $\mathcal{E}(V_1^2) = (U_1^2, y_1^2)$. En continuant ce procédé on obtient les suites

$$\{V_1^{\sigma_1}\}, \{(U_1^{\sigma_1}, y_1^{\sigma_1})\},$$

où

$$egin{aligned} \mathcal{E}(V_1^{\sigma_1}) &= (U_1^{\sigma_1}, \, y_1^{\sigma_1}), \ \sigma_1 &= 1, 2, \ldots, \, y_1^{\sigma_1}
eq y_1^{\sigma_1'} \; ext{pour} \; \; \sigma_1
eq \sigma_1' \; ext{et} \; \lim_{\sigma_1 o \infty} y_1^{\sigma_1} &= y_0. \end{aligned}$$

Soit

$$h(\langle \sigma_1 \rangle) = y_1^{\sigma_1}, \quad \langle \sigma_1 \rangle \in T_1.$$

Supposons maintenant qu'on a défini les points $h(\langle \sigma_1 \dots \sigma_n \rangle) = y_n^{\sigma_1 \dots \sigma_n}$ pour $\langle \sigma_1 \dots \sigma_n \rangle \in T_n$ et que $\overline{h(T_n)} = h(T_{n-1}) \cup \dots \cup h(T_0)$. Désignons la suite $\sigma_1 \dots \sigma_n$ par t_n . Soit $\{W^{t_n} : \langle t_n \rangle \in T_n\}$ un système de voisinages dans X tel que $y_n^{t_n} \in W_n^{t_n}$ et

(5.5a)
$$\delta(W^{t_n}) \leqslant \frac{1}{2^n}, \quad \langle t_n \rangle \in T_n,$$

(5.5b)
$$W^{t_n} \cap W^{t'_n} = \emptyset \quad \text{pour } t_n \neq t'_n.$$

Fixons un $\langle t_n \rangle = \langle \sigma_1 \dots \sigma_n \rangle \in T_n$ et soit $\langle t_{n+1} \rangle = \langle \sigma_1 \dots \sigma_n \sigma_{n+1} \rangle$. Par une construction analogue à celle de la suite $\{y_1^{\sigma_1}\}$ on trouve les suites $\{V_{n+1}^{t_{n+1}}\}$ et $\{U_{n+1}^{t_{n+1}}, y_{n+1}^{t_{n+1}}\}$ telles que, pour $\sigma_{n+1} = 1, 2, \ldots$,

$$V_{n+1}^{t_{n+1}} \subset W^{t_n},$$

(5.6b)
$$\mathcal{Z}(V_{n+1}^{t_{n+1}}) = (U_{n+1}^{t_{n+1}}, y_{n+1}^{t_{n+1}}),$$

(5.6c)
$$y_n^t \notin U_{n+1}^{t_{n+1}},$$

$$y_{n+1}^{t_{n+1}} \neq y_{n+1}^{t'_{n+1}} \text{ pour } t_{n+1} \neq t'_{n+1} \quad \text{et} \quad \lim_{\sigma_{n+1} \to \infty} y_{n+1}^{t_{n+1}} = y_n^{t_n}.$$

Posons

$$h(\langle t_{n+1}\rangle) = y_{n+1}^{t_{n+1}}.$$

On a bien

$$h(T_{n+1}) = h(T_n) \cup \ldots \cup h(T_0),$$

 $h(T_{n+1})$ étant un ensemble isolé dans X, et $d(h(\langle t_n \rangle), h(\langle t_{n+1} \rangle)) \leq 1/2^n$, $\langle t_n \rangle \in T_n$, $\sigma_{n+1} = 1, 2, \ldots$ De telle manière on va définir l'homéomorphisme h de T dans Y. Maintenant il faut le prolonger sur T de façon à avoir $h(S \setminus T) \subset X \setminus Y$. Soit donc $\sigma = (\sigma_1, \sigma_2, \ldots) \in S \setminus T$. D'après (5.6b) la suite $(U_0, y_0), V_1^{\sigma_1}, (U_1^{\sigma_1}, y_1^{\sigma_1}), V_2^{\sigma_1 \sigma_2}, (U_2^{\sigma_1 \sigma_2}, y_2^{\sigma_1 \sigma_2}), \ldots$ est une partie du jeu $Cho_X(Y)$. Ainsi, vu (5.6a) et (5.5a), cette partie a pour son résultat un point $x^{\sigma} \in Y$.

Posons $h(\sigma) = x^{\sigma}$. Evidenment

(5.7)
$$d(x^{\sigma}, y_n^{\sigma_1 \dots \sigma_n}) \leqslant \frac{1}{2^{n-1}}, \quad n = 1, 2, \dots$$

L'application h est biunivoque. En effet, soit σ , $\sigma' \in S$, $\sigma \neq \sigma'$ et soit $t_n = \langle \sigma_1 \dots \sigma_n \rangle$, $t'_n = \langle \sigma'_1 \dots \sigma'_n \rangle$, où n est suffisamment grand pour qu'on ait $t_n \neq t'_n$. Alors, on a $x^{\sigma} \in V_n^t \subset W^t$, $x^{\sigma'} \in V_n^{t'} \subset W^t$, donc, d'après (5.5b), il vient $x^{\sigma} = x^{\sigma'}$. Il reste à démontrer que $h(\sigma) \notin h(T)$ pour $\sigma \in S \setminus T$. Mais, quel que soit $n = 1, 2, \ldots$, on a

$$h(\sigma) = x^{\sigma} \in U_{n+1}^{t_{n+1}}$$
 et $U_{n+1}^{t_{n+1}} \cap h(T_n) = \emptyset$,

ce qui résulte de (5.6c), donc

$$h(\sigma) \notin \bigcup_{n=0}^{\infty} h(T_n) = h(T).$$

Montrons maintenant que h est continu. Supposons que

$$\sigma = \lim_{k \to \infty} \sigma^{(k)},$$

où σ et $\sigma^{(k)}$ appartiennent à S. Soit $t_n^{(k)} = \langle \sigma_1^{(k)} \dots \sigma_n^{(k)} \rangle$. Nous avons $d(h(\sigma^{(k)}), h(\sigma)) \leqslant d(h(\sigma^{(k)}), h(t_n^{(k)})) + d(h(t_n^{(k)}), h(t_n)) + d(h(t_n), h(\sigma))$.

Le membre droit de cette inégalité est une somme de trois termes, dont le deuxième tend vers 0 quand $k \to \infty$ et la somme du premier et du troisième peut être majorée par $2/2^{n-1}$, ce qu'on déduit de (5.7). Il en

résulte que $h(\sigma^{(k)}) \to h(\sigma)$. Ainsi, l'application $h: S \to X$ est continue et biunivoque, donc S et h(S) sont homéomorphes et le théorème est démontré.

6. Détermination. Le problème de détermination concerne l'existence d'une stratégie victorieuse pour un des joueurs A et B; on n'exige pas que celle-ci soit simple, c'est-à-dire on permet que les choix successifs puissent dépendre de tous les coups précédents de A et de B. Soit X un espace polonais et Y sous-espace indénombrable de X. Supposons que B ait une stratégie victorieuse dans le jeu $\operatorname{Cho}_X(Y)$. En adoptant les raisonnements de [1], Chapter 6, on montre que Y contient un G_δ indénombrable. Si c'est le joueur A qui a une stratégie victorieuse, alors $X \setminus Y$ contient un G_δ indénombrable, ce qu'on démontre en modifiant convenablement la démonstration du théorème 5.3.

Par conséquent, il est possible que la stratégie victorieuse n'existe ni pour A ni pour B. Soit, par exemple, X l'espace des nombres réels et Y l'ensemble de Bernstein dans X (cf. [1], Chapter 5). Ainsi, Y ne contient aucun G_{δ} indénombrable, de même son complément $X \setminus Y$, d'où il vient que le jeu $Cho_X(Y)$ n'est pas déterminé.

Lorsque Y est dénombrable, deux cas peuvent se présenter:

- (i) Toute partie de Y contient un point isolé.
- (ii) Y contient une partie sans point isolé.

Dans le cas (i) l'ensemble Y peut être représenté sous la forme $\bigcup_{\xi < \xi_0} Y_{\xi}$, où ξ_0 est un nombre ordinaire dénombrable, $Y_{\xi_0} = \emptyset$ et

$$Y_{\xi} = (\bigcap_{\eta < \xi} Y_{\eta})^{0} \cap Y \quad \text{ pour } \xi < \xi_{0},$$

 A^0 désignant l'ensemble dérivé de A.

On voit facilement que dans ce cas le joueur B a une stratégie SV dans le jeu $Cho_X(Y)$.

Dans le cas (ii) on peut construire sans peine un homéomorphisme $h: S \to h(S) \subset X$ tel que $h(T) = h(S) \cap Y$. D'après le lemme 5.1, le joueur A possède dans ce cas une stratégie victorieuse et simple. Ainsi, le jeu $\operatorname{Cho}_X(Y)$ est déterminé pour Y dénombrable.

Il se présente la question est-ce que le jeu soit déterminé pour tout Y borelien. (P 1148)

TRAVAUX CITÉS

- [1] J. C. Oxtoby, Measure and category, Springer Verlag 1971.
- [2] Contributions to the theory of games, Vol. 3, Annals of Mathematical Studies 39 (1957), p. 159-163.

Reçu par la Rédaction le 24. 6. 1978