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A CHARACTERIZATION OF oa-CONVOLUTIONS

BY

J. KUCHARCZAK (WROCLAW)

For the terminology and notation used here, see [2]. In particular,
P denotes the class of all probability measures defined on Borel subsets
of the positive half-line. By E, (a > 0) we denote the probability measure
concentrated at the point a. For any a (a > 0), the transformation T,
of P onto itself is defined by means of the formula (7,P)(«) = P(a~' &),
where Pe P, o is a Borel set, and a~ '/ = {a"'2: wve &}. The transfor-
mation 7, is defined by assuming 7,P = E, for all Pe‘P.

A commutative and associative -valued binary operation o defined
on P is called a generalized convolution if it satisfies the following condi-
tions:

(i) EooP =P for all PeP;

(ii) (aP+bQ)oR = a(PoR)+b(QoR), whenever P,Q,ReP and
a>0,b>0,a+b =1;

(iii) (T,P)o(T,Q) = T',(PoQ) for any P,Q¢P and a > 0;

(iv) if P, — P, then P,0Q — Po@ for all Q ¢ B, where the convergence
is the weak convergence of probability measures;

(v) there exists a sequence ¢,, ¢y, ... of positive numbers such that
the sequence T, K" weakly converges to a measure @ different from E,
(the power EY" is taken here in the sense of the operation o).

The class P with a generalized convolution o is called a generalized
convolution algebra and denoted by (P, o). Algebras admitting a non-
-trivial homomorphism into the real field are called regular.

An algebra (B, o) is called quasi-regular if it satisfies the following
condition:

(vi) there exists a sequence ¢,, ¢,, ... of positive numbers such that

lime, =0 and lmT7T, EY"=Q and @ #E,.
n—0

n—o0

It is known that every regular algebra (B, o) is quasi-regular (see [2],
Theorem 4). The following problem appears still to be open:
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PROBLEM. Is every quasi-regular conmvolution algebra regular % (P 826)

The a-convolutions, being a modification of the ordinary convolution,
are simple examples of regular generalized convolutions. For every a > 0,
an a-convolution is defined by the formula

) ’ 0o 00
[ f@)(PoR)(dz) = [ [ f((="+y°)"")P(dz) R (dy)
0 0 0

for all bounded continuous functions f on the positive half-line.

The aim of the present paper is to give a characterization of the a-
-convolutions. We say that a probability measure P is infinitely divisible
in the algebra (B, o) if for every integer » there exists a probability measure
P, such that P;' = P. Further, we say that a probability measure P is
decomposable if it can be written in the form P = R,0 R,, where R, # K,
and R, = E,. It is clear that each infinitely divisible measure is decom-
posable. Therefore, our result can be regarded as a partial solution of the
following problem raised by K. Urbanik:

PrOBLEM. Suppose that (P, o) is a quasi-regular convolution algebra
and the measure E, is decomposable. 1s then (B, o) an a-convolution algebra %
(P 827)

THEOREM. Let (P, o) be a quasi-regular convolution algebra in which
the measure E, is infinitely divisible. Then (B, 0) is an a-convolution
algebra.

Before proving the Theorem we shall prove some lemmas.

LevMMA 1. If an algebra (B, o) 18 quasi-regular and there exists a se-
quence @y, @, ... such that T, EY" — P, where Pe and P + E,, then

lima, = 0.
n—>00

Proof. If the algebra (B, o) is quasi-regular, then there exists a se-
quence ¢, Cg, ... of positive numbers for which

lime, =0 and lmT7T, EY® =¢, where @Qe® and@ +# E,.

N—»00 7—»00

Now, let us suppose that there exists a subsequence a, , ay,, ...
of the sequence a,, ay, ... such that

lim a;' =a < oo.

n—»o0

We have
Ta;: To, TcknE‘;"n =T, En Q.

On the other hand,
Tak_ﬂlTaknTcknE‘,”‘n = Ta;:TcknTaknEi"n -T,P = E,.
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Hence, Q = E,, which contradicts the hypothesis.

LEMMA 2. If for some integer k there exists a probability measure P
such that P* = E,, then there exists a point a for which EY = E,.

Proof. It is easy to verify that for some point a
1 1 .
P({w: a—;<w<a+—n—})>0 for any integer n > 0.

Let us introduce the notation

1 1
Ip =% a—— << a4+ —
n n

and
P(s, n )
P(s,)

P, () = for all Borel sets <.

Then we have P = a,P,+f,R,, where R, is a probability measure
concentrated on the set [0, co)— f, and a, > 0. Taking into account
the formula

n
B, = bt (")t prrpyo i
r=1
and the inequality a® > 0, we infer that the measure P is concentrated

at the point 1. Consequently, P* — E,. Further, it is easy to verify
that

lim PS¢ = Bk,
n—o0
Thus E* = E,, which completes the proof.

Proof of the Theorem. From lemmas 1 and 2 it follows that
for the measure E, there exists a sequence a,, a4, ... such that

(1) E, =T, E®

and

(2) . lima, = 0.
n—00

First of all, we prove that

(3) lim 2% — 1,

100 an+1

Of course, it suffices to prove that for every convergent subsequence
a,,k/az,,k+1 of sequence a,/a,, ,

e,
lim —% =1.
ko0 a"k+1
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We prove that

a,,k

(4) lim < oo.

k-0 a"k+l

Contrary to this let us suppose that

py 41
lim —*
ko0 Oy "

= 0.

Of course, we have the formula

Tank+1Ec1,(”k+l) = E,.

On the other hand, putting d, = a,_ ,,/a,,,
Tan,,+1 E‘l’(”k‘“’ =T g, Ei(ﬂk+l) =T Uy, E:”kOTdka,,kEl - E,.
Hence E, = E, which gives a contradiction. Formula (4) is thus

proved.
Let 7 = a,, /@y, 1, and 7, — 7. Then we have the relation

TankE‘;"‘k“) = Ta“kE‘;”koT,,”,‘E1 - E,0E, = E,.
On the other hand,

T, B = ™Y = T, B, > T,E,.

T'ka‘nk+ 1

Hence E, = E,, and r = 1. Formula (3) is thus proved.

From (2) and (3) it follows that for any pair x, ¥ of positive numbers
there exist subsequences a,,a,,... and a,, a,, ... of the sequence
a,, Gy, ... sSuch that

aﬂ

. k
lim
k—o00 amk

Y
—.

Moreover, we can assume without loss of generality that the limit

an .
8§ =lim k y

k—o00 amk.l.nk

perhaps infinite, does exist. First of all, we prove that the limit s is finite.
Let us suppose to the contrary that
a
limv, =0, where v, = Dt Tk .
Fe—o0 a”"?

Setting w; = a, /4, , We have

o(npt+mg) __
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On the other hand,
E:( Mt — T vkankEinkOTvkwkamkEim k
= TvkEIOTvkwkElﬁEoOEo = EO'

Hence E, = E,, which is impossible. The finiteness of the limit s

is thus proved.
Using the notations s, = a, (a6, ,n, and w, = a, (6, , We obtain
the following equations:

TzankEi("k+mk) = TzankE;kaTzankEimk
= T.5,0 Ty, ™ > T, F,0T,F, = B,0F,,

Crp+my

T“"k Ei(”k“"") —_ T“k“nk+mk

E.i(nk+mk) —> T“El = Eﬂ'

Hence we have
(b) EoHB, = E,,.

We define an auxiliary function g(z,y) by means of the formulas
g(x, 0) =2,9(0,y) =y and g(x, y) = sx for > 0, y > 0. The function g
satisfies the equation

(6) E, 0By = Eyy,y).
It is easy to see that g is the only function satisfying (6).

As a direct consequence of equation (6) and of the uniqueness of its
solution, we obtain

(7) 9z, y) = g(y, x),
(8) g(g(2, ¥), 2) = g(x, g(9, 2)),
{9) g (2, 2y) = 2g9(, ¥)

for all non-negative numbers z, ¥ and 2.

Now, we prove that the function g is continuous in the quadrant
2>0,y > 0. Let 2, > 2 and y, — y. Moreover, suppose that the sequence
g(2,, ¥,) > 2, where 0<z< oo. The equation 2 = oo is impossible.
Indeed, setting p, = 2,/9(%,,¥,) and ¢, = Ynl9(Zny ¥») bY (8), we have
E, oE, = E,. If p,—~>0 and g,— 0, then E, o E, — E, and E, = K,.
It is impossible. Hence

z< oo and EoFE,=1lim(E, oF, )=1mE, =E,.
n—>00 n—>00

From this equation it follows that g(«, y) = 2. Thus the function g

is continuous.
From (6) we obtain

(10) Eiz = L1

10 — Colloquium Mathematicum XXVIiI.1
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If g(1,1) < 1, then, by induction from (10), we get Ej¥ = Epng,,
— E,. Hence T,, By — E,. On the other hand, T,,E;" = E,. Since
the equation F, = E, cannot hold true, we have the inequality ¢g(1,1) > 1.
If g(1,1) =1, then from (10) we get E}® = E, and, consequently, E™
= F,. Hence, it follows that

lim T, B* = lim T, B, = E,.
n—00 N—»00

Of course, it is impossible. Therefore,
(11) g(1,1)>1.
By (9), to prove the inequality
(12) gz, y) >z (2>0,y>0)

it suffices to prove it for y = 1. Let us suppose that there exists a number
x, such that ¢g(z,,1) < x,. Since ¢g(0,1) = 1 and the function ¢ is contin-
uous, we infer that there exists a number #, lying between 0 and x, for
which the equation g(z,, 1) = z, holds. From this equation, (8) and (9)
we obtain, by induction, g(wo, g"(1, 1)) = @,. Setting 2, = z,/g9"(1, 1),
we get, by (9), ¢(2,,1) = #,. From inequality (11) it follows that
limz, = 0.
n—»00
Thus, by the continuity of g, the last equation implies ¢(0,1) = 0
which contradiets the definition of ¢g(0,1) = 1. This completes the proof
of (12).
Now, we prove that for all > 0

(13) 9(x, Y1) > g9(», ¥;), Whenevery, > y,.

If y, = 0, then (13) is a consequence of (12) and the definition of g.
Suppose that y, > 0. Since ¢(0, y,) = y, and, by (12), §(¥;, ¥:) > ¥1, We
infer, by virtue of continuity of g, that there exists a number y satisfying
the inequality 0 < y < y, for which the equation g(y, ¥;) = y, holds.
Hence, taking into account (7), (8) and (12), we obtain

g(@, y;) = g(w, 9(y, ¥3) = g(9(=, ¥), ¥4
=g(g(y, 2), 4s) = 9(v, 9(, ¥5) = g(9(=, ¥2), ¥) > g(x, ¥5)

which completes the proof of (13).
Bohnenblust proved (see [1], p. 630-632) that the continuous functions
g satisfying conditions (7)-(9), (13) and condition ¢(0,#) = # are of the
form
g(z,y) = (z°+9y*)"%, where 0 < a < oo.
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From this and from (6) it follows that for every # > 0,y > 0 the
equation
.Ezo E” = .E(zd_HIG)l[q,

where a is a positive constant, holds. Now, it is easy to verify that for
convex linear combinations P and R of the measures E, (a > 0) the
formula

(14) [ f@)(PoR)(da) = [ [ f((@*+y")"")P(ds) R(dy),
0 00

where f is a bounded, continuous function on [0, oo), holds. Since the
convex linear combinations of the measures E, form a dense subset
of P in the sense of weak convergence, formula (14) holds for all measures
P and R from . In other words, the algebra in question is an a-convo-
lution algebra.
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