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SOME REMARKS ON VARIANTS OF THE NAVIER-STOKES
EQUATIONS

BY
R. H. DYER AND D. E. EDMUNDS (SUSSEX)

In references [4] and [6], Ladyzhenskaya has offered mathematical
and physical grounds for the consideration of new equations for the descrip-
tion of the motion of viscous incompressible fluids. She has indicated
that such motion may be described by one of the following systems:
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where v, and v, are positive constants which characterise the medium,
0 is the domain in E? containing the fluid, the z; (j= 1, 2, 3) are rectan-
gular Cartesian coordinates, ¢ denotes the time, and u, p and f, each
functions of x and ¢, represent respectively the velocity, pressure and the
external force. Independently of Ladyzhenskaya, physical arguments for
the replacement of the Navier-Stokes equations by those of system (3)
have been put forward by Golovkin [3].
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Ladyzhenskaya [4] maintains that “which of these (or similar) systems
will be the most appropriate for the description of viscous incompressible
flow will be shown by future comprehensive mathematical and physical
analysis. For each of the systems proposed unique solvability in the
large of the initial boundary value problems has been established, and
this contrasts with the situation in respect of the Navier-Stokes equations.
Such a property is of course required for a proper mathematical description
of a deterministic physical process.” '

In view of Ladyzhenskaya’s remarks it seems of interest to consider
the extent to which solutions of the systems (1), (2) and (3) enjoy prop-
erties of the same general character as those possessed by the Navier-
Stokes equations. In this note we consider recent studies [1], [6] of
lower bounds for solutions of the Navier-Stokes equations and obtain
comparable results for each of the systems (1) to (3). By contrast, however,
whilst such studies of lower bounds in the Navier-Stokes case readily
give rise to well established backward uniqueness theorems, we have
not been able to establish that they do so for the newly proposed systems.

The methods of proof of our results for each of systems (1), (2) and
(3) are patterned after those in [6], and are so similar that we give detail
only in respect of system (1). Results of the same general character can
be obtained under rather different hypotheses by adhering more closely
to [1]. From this point onward we shall assume that in each of the systems
(1), (2) and (3), f;, =0(2 =1,2,3). This is appropriate if the external
force may be absorbed into the pressure term.

Suppose 2 is a bounded domain in E?, with boundary 0% and closure
Q. Suppose, moreover, that £ is such that the use of Green’s theorem
in -what follows is justified. We adopt the following notation:

If g = (g;), h = (R;) are 3-vector functions belonging to C'(2 x [0, T)),
where 0 < T < oo, put

(g0, h(0) = [ i@, Ohi(e, )da, |g)]* = (g(t), g(1))
Q2
and '
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The theorem to follow embodies our main result.

THEOREM 1. Let 2 be a bounded domain of E* and let ueC*(Q x [0, T)),
peC (2% [0, T)) be a solution of one of the systems (1), (2) or (3), such that
w =0o0n0R2x[0,T). Suppose U(t) = sup{lu(x,t)|: veR}eL*[0,T). Then

(1) |u ()] >0 for 0 <t,<t<T implies that

(4) ()] > K [u(t,)| exp(—2a(t—1,)), t,<t<T,
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where K and A are positive constants depending on u(t,) and the L* norm
of U;

(ii) if T = oo, then |u(t)] = O (exp(—ut)) as t— oo for each u >0
implies that u = 0.

Proof (appropriate to system (1)). With the notational conventions
introduced above the system of equations with which we are presently
concerned is
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Multiplication of (5) by u;, summation over ¢ and integration over 2
gives
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since (u, w-grad#) = 0 and (u, grad p) = 0.
Similarly, multiplication of (5) by 0u;/0t and integration over £
provides
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for ¢, <t < T; plainly,
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From (7) we see that — (u, u,) > 0, and hence
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Thus,
aQ
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and integration of this last inequality shows that

Q1) < Q(t) expf S1U%(s)ds, t,<t<T.

Now,
d d
—loglul = }lul~— [uf
= — (vo+vallul®) [luel* || 2
> —20.
Therefore,
d
—d—log|u|> —2Q(t,) exp f ;LU (s)ds, t,<t<T,
and hence

13 n
[u(®)] > |u(to)lexp {—2Q (%) [exp ( [ U*(s)9;7ds)dn}.
t t

Part (i) of the theorem is now evident since by hypothesis UeL*[0, T).
As for part (ii), the arguments of [1] and [6] are immediately applicable.
We repeat them here for the sake of completeness. Suppose the conclusion
of (ii) is false; then there exists #,e[0, oo) such that |u(f,)] > 0, and from
continuity |#(¢)] > 0 on some interval [, ?,). Let [y, T') be the largest
such interval on which |u(¢)] > 0. This interval must be [t,, o), for if
T were finite (4) would imply that |u(T)| >0 giving a contradiction.
But then from (4),

e“|u(?)| > Olu(ty)| for all te[t,, o),
where C is some positive constant, and for this to be compatible with
the hypothesis of (ii), |#(¢,)] = 0 providing a contradiction.

Note. In following through the proof of Theorem 1 in respect of
system (2) it is appropriate to set

_ g . V1 ou; \? [ 0w, \?
Q) = | ol =y (am,,) (52) o,

and in respect of system (3) to define

Q) = | it +2 [ fourlapas .
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By means of (7) and Poincaré’s inequality, we may derive companion
to Theorem 1: _

THEOREM 2. If Q is a bounded domain of E* and ueC? (Ex [0, T)),
pe0' (R X [0, T)) is a solution of one of the systems (1), (2) or (3) such that
=0 on 02x[0,T), then

(@) < lu(0)Pe7*, 0<t<T,

where a i8 a positive constant depending on the diameter of L.

The methods used to derive results comparable with Theorems 1 and
2 for the Navier-Stokes system of equations are easily adapted to provide
forward and backward uniqueness theorems for solutions of that system.
Whilst we have been able to obtain a uniqueness theorem for solutions
of systems (1), (2) or (3) forward in time, Theorem 3 below, a proof of
backward uniqueness has so far eluded us (P 713).

THEOREM 3. Let 2 be a bounded domain of E°. Let u™C*(Q X [0, T)),
pteC? (-.Qx [0, T)), i = 1,2, be two solutions of ome of the systems (1), (2)
or (3) with u® =u® on 02x[0,T). If u(x,t) = u®(x,t,) for all
xeQ and some t,,0 <ty < T, then uV = u® for all te[t,, T).

Proof (appropriate to system (1)). Let w; = w{? —«{® (i =1, 2, 3).
Using (5), plainly
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. Multiplication by w, of (8), integration over 2 and appeal to Green’s
Theorem shows that

1 d P
(10) 5 =Wl ool + ,,f e s

o L B2 (I [P o]} = 0.

From (10),

where V (t) = sup{|gradu® (z, t)|: < Q}.
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Now, if |[w(t;)] >0 for some ¢, >1t,, then

lw(to)| = |w(ty)] eXP(_)’(tl—to))
for some positive constant y. But then |w(t,)| >0, which contradicts
the hypothesis.

Remark. Demonstration of the theorem in the cases of solutions
of systems (2) and (3) rests on the following respective equalities com-
pa.nion to (10):
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2 dt
+ 2 [[{(curlap— (eurl a2y {(eurlu) + (curl u®y) (curluo)*]dz =

In conclusion we observe that the time independent equations (1)
have yet another feature in common with the Navier-Stokes equations
in that solutions of them possess the strong unique continuation property.
This can be shown by an elementary application of the methods of [2].
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