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Let A be an integral domain with the quotient field K. Then the
group of divisibility G(A4) of A is the partially ordered group K*/U(4),
where K* denotes the multiplicative group of K and U(A4) the group of
units of A with aU(4) < bU(A) if and only if a divides b in A. It is well
known (see [10]) that any Abelian lattice-ordered group is a group of
divisibility of some Bézout domain. (For analogous problems see [3].)

But every lattice-ordered group may be endowed with the discrete
topology and, therefore, considered as a topological lattice-ordered group.
We have an analogous situation for fields: every field may be considered
a8 a topological field with respect to the discrete topology.

Henece, it seems natural to consider the following question: do there
exist, for any Abelian lattice-ordered topological group &, a topological
field K and a Bézout domain A in K such that U(A) is closed in K* with
respect to the topology induced from K and such that the factor group
K*/U(A) is a topological lattice-ordered group isomorphic (i.e. group
and lattice homeomorphic) to G%

The aim of this note is to solve this problem especially for a topolo-
gical lattice-ordered group such that there exists a homeomorphism from
this group into the Cartesian product of totally ordered topological groups.

All groups and rings are assumed to be commutative.

At first, we recall some basic facts from the theory of topological
lattice-ordered groups. A topological lattice-ordered group (motation: tl-
group) is a triple (@, <,7) (henceforth denoted simply by @), where G
is & group, < is & partial order, and J is a topology on the underlying set
|@| of G such that (@, <) is a lattice-ordered group (notation: l-group),
(G, 7) is a topological group, and (|@|, <, J) is a topological lattice. By 5 (0)
we denote the complete system of neighbourhoods of zero in G. We say
that two tl-groups are tl-isomorphie if there is a homeomorphism between
them which is both a lattice and group isomorphism.
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Let G be a tl-group, and 7 its topology. If the sets (— o0, g) = {# € G:
< g} and (g, ©) = {x eG: v > g} are open for any g €@, then J is
called a semi-interval topology (notation: si-topology, see [16]).

Let @ be an l-group. We use Gt to denote {g e G: g > 0}, where 0
is the zero of G. A prime l-ideal P of @ is a convex subgroup of G which
is also a sublattice, and if aAbeP, then acP or beP (here anb =
inf{a, b} in @) for any a, b € G. If {G;: ¢ € J} is a set of 1-groups, then the

direct product [] G; is the set of all functions f on J such that f(3) € Gy,
teJ
the operations in [] @; being performed componentwise. An l-group @
1eJ

is said to be a subdirect sum of {G;: i € J} if G is an l-subgroup of ” G,
and each projection map =;: G — G, is a surjection.

Let @ be a tl-group and let {P;: i € J} be a collection of closed prime
l-ideals of G which meet in the zero. We say that {P;: i € J} i 1s a topological
realization of G if the natural map

7 G—> n (G/P)
ieJ
is a homeomorphism from G onto =@, where »@ inherits its topology from

I] (@/P) (see [8]).

Further, let K be a topological field with topology 4. Then the multi-
plicative group K* of K is a topological group with respect to the topology
induced from K. Now, let w be a valuation on a field K with the value
group G,,. Then a valuation w defines a field topology 7, in K: we take
the sets of the form

Upoe={weK: wx)>a},acG}), and R,={weK: w(x)>0}

as a base of the neighbourhoods of zero in K. If G, is considered to be
a discrete topological group, then w is continuous. We say that a family
of valuations {w;: ¢ € J} on a field K is a defining family for ah integral
domain 4 c K if -
A =NR,..
g

We recall the notion of a locally bounded topology. Let K be a topo-
logical field. A subset B < K is said to be bounded if for every neighbour-
hood V of zero there exists another neighbourhood U with BU < V.
Then K is said to be loocally bounded provided there exists an open bounded
set in K.

Finally, we say that a triple (K, 7, A) is a represeniation of a tl-group G
if K is a topological field with a topology 7, A is a Bézout domain with
the quotient field K, the group of units U(4) of A is closed in K*, and
the topological factor group G(4) = K*/U(4) is a tl-group which is tl-
isomorphic to G. In this case we say that G has a representation.
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It should be observed that in many cases we need not investigate
whether G(A) is a topological lattice. Indeed, the following simple lemma
holds:

LeMMA 1. Let (G, <,T) be a tl-group and let G, be a topological group
with a topology T, such that G, is an l-group. If there exists a homeomorphism y
of G, onto G such that it is an l-isomorphism, then @, is a il-group.

Proof. Let U €7,(0) and g € @,. Since G is a tl-group, there exists
V €7,(0) such that

(v V —(v9)*) v (¥V +(v9)7) < »U,
where 2t =2 v0 and 2~ = 2A 0. Now, since y is an l-isomorphism, we
obtain
(V—gt)v(V+g ) U

and, by [14], Theorem 1.3, @, is a tl-group.

LEMMA 2. Let K be a topological field with a topology . Then K*
i8 an open set in K. Further, if K is non-discrete, then K* is a dense set in K.

Proof. Let # € K*. Since K is a topological field, we may find a neigh-
bourhood W of # in K such that 0 ¢ W. Hence, e W < K* and K*
is open in K. Further, let K be non-discrete. Then for any neighbour-
hood V of zero in K we have VAK* # @. Thus, K* is dense in K. -

LeEMMA 3. Let K be a topological field with a topology I and let
w: K* > @G, be a valuation on K such that w is continuous with respect
to the disorete topology on Q. Then 7 ,< 7.

Proof. Since w is continuous, it follows that, for any « € G, and
@, € K* such that w(z,) = a, the set

w-l(a) = B+ Uw.a s K*

is open in K*. From Lemma 2 we infer that U, , is open in K. Hence
Tw<T.

PropPOSITION 1. Let H be a closed l-ideal of a tl-group G. If G has
a representation, then the factor tl-group G |H has a representation.

Proof. Let (K,7, A) be a representation of G. By [9], Theorem 2.1,
there exists a saturated multiplicative system 8 in A such that the group
of divisibility G(4g) of a quotient domain Ag is l-isomorphic to G/H.
Hence, there exists an l-isomorphism ¢ which completes the commutative
diagram

K—L >G4)——2—>@

8 — Colloquium Mathematicum XXXIX.2
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where f, g, and ¢ are the canonical homomorphisms, and ¢ is a tl-isomor-
phism associated with the representation (K,7,A). Since U(Ag)
= (¢pf) ' (H), U(4g) is closed in K* and we may suppose that G(4) and
G(Ag) are the factor topological groups of K*. Now, let (U4 H)/H be
open in @/H; then (¢f)"'(U)/U(Ag) is open in G(4g) and

o ((@f)"H(U)/U(Ay) < (U+H)/H.

Thus, o is continuous. Furthermore, since U-U(Ag)/U(Ag) i8 an
open set in G(4g), it is easy to see that

39’f( U) = U(U‘ U(As)/U(As))
is open in G /H. Hence, by Lemma 1, (K, 7, Ag) is a representation of G/H.

The following theorem solves completely the problem of existence
of a representation for a totally ordered tl-group.

THEOREM 1. Lét (G, <, ) be a totally ordered tl-group. Then G has
a represeniation if and only if G i3 a discrete space.

Proof. Suppose that G is a discrete tl-group and let K be the quo-
tient field of the group algebra &/;(G) of G over the fixed field k. Then
the classical result of Krull asserts that there exists a valuation w on K
with the value group @. Since U(R,) is open in (K,J,), G has a repre-
sentation.

Conversely, suppose that G has a reprcsentation (K,7, A). Then
w = pf: K* - @ is a valuation on K, where f is the canonical map of K*
onto G(4) and ¢ is a tl-isomorphism associated with the representation.
Thus, R, = A. Now, by [16], 1.2, J is an si-topology, and since w is
continuous, the sets

Upo = w"l((a, °°)), ae@,

are open in K*. By Lemma 2, 5, <, and since U(R,) = U(4) is open
in 7, G is a discrete space.

It is well known that the factor group of an l-group with respect
to a prime l-ideal is totally ordered. Then, using Proposition 1 and The-
orem 1, we obtain the following result:

COROLLARY 1. If a il-group G has a representation, then every closed
prime l-ideal of G i3 open in @.

Observe that, by Corollary 1, an example of a tl-group (not totally
ordered) which has no representation is easy to construct. The example
of a topological product of two copies of a totally ordered group with the
interval non-discrete topology works.

PROPOSITION 2. Let (G, <, #) be a tl-group and let (K,T, A) be ils
representation. Then there exists a topological realization of G if and only
if there i8 a defining family {w;: i € J} for A such that I > sup {7 ,,: i € J}
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and {U(R,,): i €J} is a subbase for the sets U-U(A), where U i3 an open
neighbourhood of 1g in K.

Proof. Suppose that {w;: ¢ e J} is a defining family for A which
satisfies the conditions of the proposition. The value group G, of w;,
i € J, may be considered to be a tl-group with respect to the discrete
topology. Then for every ¢ € J there is a continuous and open l-epimor-
phism &; which completes the commutative diagram

K ! >G(A)
wi ¢
G s——— @

where f is the canonical homomorphism and ¢ is a tl-isomorphism asso-
ciated with the representation. Indeed, for every a € G we put

e-(a) = w,;(®#), where 2 g !(a).

Since U(4) < = U(R,,), the definition is correct.

Now, if a > 0, then for every z e p"'(a) we haver € A < < R,,, whence
&(a) = w;(x) = 0. Conversely, since A4 is 3 Bézout domain, for any a € G"’
there exists a € A* = A — {0} such that w,(a) = a (see [6]). Then qu(a)
> 0 and ¢(pf(a)) = a. Further, since I > sup{7,,: ¢ €J} by Lemma 3,
w;'(U) is open for any U < @,,. Hence, of (w; l(U)) c ¢1(U) is open
in G, and ¢; is open and continuous.

Then for any ¢ € J there exists a closed and open prime l-ideal H;
of G such that the factor tl-group G/H; is tl-isomorphic to G, . We shall
identify these two groups.

Now, applying the identity w; = ¢¢f, we obtain H; = ¢f(U,), and
since

U4) = NU;,

ieJ

() H; = {0}.

ieJ

we have

Finally, let < G be an open neighbourhood of zero in G. Then
¢ (%) = U-U(A)/U(A) for some open neighbourhood U of 1z in K*.
By the assumption, there exist 4,, %, ..., ¢, € J such that
n .
N U, = U-U(4).
t=1

Henece

‘é H, tpf(;é U,) s
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Therefore, {H;: ¢ € J} is a subbase of neighbourhoods of zero in @
which meet at zero and, by [8], Theorem 12, {H;: i € J} is a topological
realization of G. ‘

Conversely, suppose that {H;: ¢ € J} is a topological realization of G
and let w;, ¢ € J, be the composition of the maps

K* 1 >@6(4) 2G> 2@ 5 G/H,,

where f, n, and ¢, are the canonical homomorphisms. Since f is a semi-
valuation (see [10]) and ¢, n, and ¢ are 1-homomorphisms, w; is a valu-
ation for every ¢ € J (see [10]). It is clear that w,; is continuous and from
the fact that {G'/H;: ¢ € J} is a realization of @ we infer that {w;: ¢ € J}
is a defining family for A. By Corollary 1, G/H, is a discrete tl-group.

Now, it is easy to see that for every ¢ € J there exists a tl-isomorphism 7;
which completes the commutative diagram

GH; ————————>K"|U(Ry)
!171 f‘l‘
,p—l
G >G(A)

where f; is the canonical map. Let
T = H T;
teJ

be the (categorical) product of 7z; and put v" = /=@, the restriction of
on n@. Then 7’ is a tl-isomorphism of #G onto

(%) {(mU(Rw‘)) € nK'/U(Rw‘): z € K‘}
ied :

Finally, we set y = 7’-w-p. Then ¢ is a homomorphism of G(4)
onto (x). Now, since w; is continuous for every ¢ € J, by Lemma 3 we obtain

T > sup{T,: ted}.
Let U be an open neighbourhood of lx‘in K*. Then U-U(A)|U(A)
is open in G(4) and ¢(U-U(4)/U(A)) is open in y(G(4)). Hence, there
exist ¢;, %3, ..., %, €J such that

n

#( ) TR )IT(A) = [[ (TR, )T R ) % [ BT (Rg)np(E(4)

k=1 j?é{k

< p(U-U(4)/TU(4)).
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Hence,

n
I1 U(Ry,) < U-U(A)
k=1
and the proof is complete.

THEOREM 2. Let (G, <,7) be a tl-group with a topological realization
{H;: i € J}. Then there exists a representation (K,T, A) of G such that (K, T)
is a locally bounded field and U (A) s a bounded set if and only if J is a finite
set and H; is open for every ¢ € J.

Proof. Suppose that J is a finite set and H; is open for every i € J.
Then G is a discrete tl-group. Let A be a Bézout domain with the quo-
tient field K such that G(A4) is l-isomorphic to G and let

be the same as in the proof of Proposition 2. We set 7 = sup {7, : i € J}.
Then, by [7], (K,7) is a locally bounded topological field. Since
A=NE, and U(4)=)U(Ry,)),
feJ ieJ
U(A) is open in K and (K,7, A) is a locally bounded representation of G.
It remains to show that U(A) is a bounded set. Let

+

a1

We may assume that the valuations w;, ¢ € J, are mutually inde-
pendent. By the approximation theorem for independent valuations,
there exists an element # € K* such that

w*(m)>a{, i=1’2,-..’”

Then «#U(A) = %, since U(4) < U(R,,), iedJ. Hence, by [1],
chapitre 3, § 6, exemple 20, U(4) is a bounded set in K.

Conversely, let (K,7, A) be a locally bounded representation of @
such that U(A4) is & bounded set. Thus, we may find a bounded neighbour-
hood U of zero in K and, therefore, ((1+ U)nK*)-U(A4) is a bounded
set. By Proposition 2, there exists a deﬁning family {w;: ¢ edJ} for A
such that 7 > sup {.7 : ted}, and {U(R,,): ¢ €J} is a subbase for sets
U-U(A), where U is a neighbourhood of 1z in K*. Hence, there are
1y By e.y b, €J such that

ﬁ U(Ry,) < ((1+U)nK")-U(4)

and it follows that (K, sup {9’ : 1 e€d}) is a locally bounded topological
field. Again, by [7], J is a finite set and, by Corollary 1, H, is open for
every ¢ ed.
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THEOREM 3. Let (G, <, F) be a tl-group with a topological realization
{H;: i € J}. Then there ewists a representation (K, , A) of G such that
(K,T) is a locally compact field if and only if G i3 a discrele group tsomor-
phic to the group Z of integers.

Proof. Let (K,J,A) be a locally compact representation of G.
By Proposition 2, there exists a defining family {w;: ¢ € J} for A such
that sup{7,,: ¢€J}<7. Every locally compact topological field is
a complete topological field and, by [18], Theorem 10, J is & minimal
field topology in K. Since

T Zeup{Ty: 1ed} =T, ied,

T w; =T u,; for every i, j €J. Thus, the valuations w,, ¢ € J, are mutually
dependent. Now, applying [2], § 5, Proposition 2, we infer that w; is a dis-
crete rank one valuation for'every ¢ € J and it follows that the valuations
w; # w; are mutually independent. Thus, cardJ =1 and H, = {0}.

Therefore,
G~GH, =G, ~Z.

Conversely, it remains to show that the discrete group Z has a locally
compact representation. Consider a p-adic valuation v, on the field @
of rational numbers for some prime number p € Z. Then G, ~ Z and the
completion @, of the topologlcal field (@, 7, ) is the field of p-adic numbers
which i is locally compact. Let v, be the continuous extension of v, on @,.
Then v, is a valuation on o, a.nd it is clear that (Q,,7; op? R p) is a locally
compact representation of Z.

Further, we shall deal with a tl-group G such that the set of dual
principal polars in @ is a base of neighbourhoods of zero. Recall that two
elements a and b of an l-group G are disjunctive if |a| A [b] = 0. An element
g € @ i8 a weak unit element in @ if the only disjunctive element in @ to g
is zero. Now, the disjunctive complement of a set A < @ is the set

= {g €@: |g|A |a] = 0 for arbitrary a € A}.

Further on, A" = (A4’)’ and A"’ = A’. Then the set {a}' is called
the dual principal polar. The set of all dual principal polars will be de-
noted by #. We recall some basic facts about the completely regular
realization of an l-group @. Let {G;: ¢ € J} be a realization of G. We intro-
duce the following notation for f €@ and i e J (see [12]):

Z(f) = fed: f) = 0}, ¥() = {fe@: () =0}.

Note that ¥(¢) is a prime l-ideal and G; ~ G /¥ (i). Now, a realiza-
tion {G;: ¢ € J} is said to be completely regular if for any element f e G
and any element i€ Z(f) there exists an element g e@ such that
t€dJ —Z(g) = Z(f). According to [12], 8.7, a realization {G;: i eJ} is
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completely regular if and only if {¥(¢): ¢ € J} is a set of minimal prime
l-ideals of G.

LEMMA 4. Let {w;: © € J} be a defining family for a Bézout domain A
and let, for every ¢ € J, w, be centred on a mawimal ideal of A. Then {@,,:i € J}
i8 a completely regular realization of G(A).

Proof. Since {w;: i €J} is a defining family for 4, {G,: ieJ}
is a realization of the group G(4). Now, by the assumption, for every ¢ € J
there exists a maximal ideal m; of A such that

B,

= An,.

By [9], Corollary 2.4, there is a one-to-one correspondence between
maximal ideals of A and ultrafilters in the positive cone G(4)* of G(4).
Indeed, if P and F correspond one to the other, then the group of divisi-
bility of Ap is G(4)/H, where H is a minimal prime l-ideal of G(A) with
G(A)*—H = F. By [9], Theorem 2.1, .

H = {g,—g:: 9; € f(A—P)},

where f is the canonical semi-valuation of K* onto G(4).
Now, since

¥(i) = {oU(A): @€ U(R,)} = {oy~'U(4): 3,y e A—m},

we infer that, under this correspondence, m; corresponds to the ultra-
filter G(A4)* — ¥ (). Hence, ¥(i) is & minimal prime l-ideal of G(4) and
{Gy,: ¢ €J} is a completely regular realization of G(4).

Further, let G be an 1-group. Then, by [14], 7.2, there is a topology 7 »
on @ such that (G, 7 ,) is 4 tl-group and 2 is a base of neighbourhoods of
zero. We denote by J(A4) the Jacobson radical of a domain A.

THEOREM 4. Let (K,7, A) be a representation of (@,T ). Then G
i8 @ discrete space if and only if J(4) # {0}.

Proof. Let {m;: ¢ €J} be the set of maximal ideals of A. Since 4
is a Bézout domain, for every ¢ € J there is a valuation w; on K such that
A, = R,,. Hence, according to Lemma 4, {G,,: ¢ €J} is a completely
regular realization of G(4) =, G. Now, for every ¢ € J there is an 1-homo-
morphism ¢ which completes the commutative diagram

E*—L ,q4)——>@

wy /q‘
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where f and z; are the canonical homomorphisms. For any a € A — {0}
we have

Z(gf(@) = fi e T: spfla) = 0} = {i e J: wy(a) = 0}
={ied: acd—m}.

Assume that @ is a discrete space. Then, by [14], 7.2, there is a weak
unit element ¢ in G. We may assume that ¢ > 0. Hence, there exists
ae€A—{0} such that ¢f(a) =e Since {G,: ieJ} is a completely
regular realization, by [11], 12.11, we have

Z(6) = Z(gf(a)) =9
Thus,

aed(A) =) {m: ied}.

Conversely, if aedJ(A), a 0, then Z(pf(a)) =9 and, by [11],
12.11, and [14], 7.2, G is a discrete space.

We conclude this note by mentioning a result concerning a contin-
uous order relation in a topological group. Recall that for a partially
ordered set (M, <) with a topology  the order relation < is said to be
continuous if for any a, b € M with a < b there are U, V €7 with a e U,
b € V such that, for every u € U and v e V, u <€ v holds. By [17], < is
continuous if and only if the graph M (<) = {(», y): » <y} of < is closed
in M xM. The importance of this notlon follows from the fact that for
every tl-group with T,-topology the order relation in G is continuous.
Thus, if the group of divisibility G(4) of a Bézout domain 4 is a tl-group
with respect to the factor topology, then the division with respect to A
is continuous.

We have the following simple characterization of continuous order
relation in a topological order group:

PROPOSITION 3. Let (@, <,7) be a topological order group. Then <
8 continuous if and only if G* is closed in G.

Proof. Let G* be closed in @ and suppose that (z,y) e G(<) and
(#, ¥) ¢ G(<), where G(<) is the closure of G(<) in @ xG. Then we have
yo~' ¢ G*. Hence, there is a neighbourhood U of yz~! such that UnG@* = @.
Now, there is a neighbourhood W (V) of z (y) such that W~'-VnG*+ = @.
On the other hand, W x V is a neighbourhood of (z, ¥) in G X@, and then
there exists (u, v) €e G(<)nW x V, a contradiction.

Oogersely, suppose that < is continuous and let geG*, g ¢GT,
where G* is the closure of @, in G. Then g~' & 15 and, by [16], there is
a neighbourhood U of 1; such that ¢~' < u for every u e U. Further,
since gU is a neighbourhood of g, there is ¢ eG*‘ ngU. Thus, 13< q = gu
for some % e U, a contradiction.



GROUPS OF DIVISIBILITY 311

(1]
[2]
[3]

[4]
(5]

(6]
[7]
(8]
[9]

[10]
[11]

[12]
[13]
[14]
[15]

[16]
[17]

[18]

REFERENOES

N. Bourbaki, Topologie générale, Paris 1966.

— Algébre commutative, Paris 1964.

L. Fuchs, The generalication of the valuation theory, Duke Mathematical
Journal 18 (1951), p. 19-26.

R. Gilmer, Multiplicative ideal theory, New York 1972.

M. Griffin, Rings of Krull type, Journal fiir die reine und angewandte Mathe-
matik 229 (1968), p. 1-27.

Ch. Holland, The interval topology on a certain l-group, Czechoslovak Mathe-
matical Journal 15 (1965), p. 311-314.

H. J. Kowalsky, Bettrdge sur topologischen Algebra, Mathematische Nachrich-
ten 9 (1953), p. 261-268.

R. L. Madell, Embedding of topological lattice-ordered groups, Transactions
of the American Mathematical Society 146 (1969), p. 447-455.

J. L. Mott, Convex directed subgroups of a group of divisibility, Canadian Journal
of Mathematics 26 (1974), p. 532-542.

J. Ohm, Semi-valuations and groups of divisibility, ibidem 21 (1969), p. 576-591.
F. Sik, Struktur und Realisierungen von Verbandsgruppen V, Mathematische
Nachrichten 33 (1967), p. 221-229.

— Struktur und Realisierungen von Verbandsgruppen IV, Spezielle Typen von
Realisierungen, Memorias de la Facultad de Ciencias Universidad de la Habana 1
(7) (1968), p. 19-44.

B. Smarda, The lattice of topologies of tl-groups (to appear).

— Topologies in l-groups, Archivam Mathematicum (Brno) 3 (1967), p. 69-81.
— BSome types of tl-groups, Publication Facultatis Scientiarum Naturalium
Universitatis J. E. Purkytie 507 (1969), p. 341-352.

— COonnectivity in tl-groups (to appear).

L. E. Ward, Partially ordered topological spaces, Proceedings of the American
Mathematical Society 6 (1964), p. 144-161. _

W. Wiestaw, On topological fields, Colloquium Mathematicum 29 (1974),
p. 119-146. .

DEPARTMENT OF MATHEMATICS
MINING UNIVERSITY, OSTRAVA

Regu par la Rédaction le 9. 6. 1976;
en version modifide le 2. 12. 1976



