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ON SOME MINIMAL TRANSFORMATIONS
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The aim of the paper is to present a complete proof of a theorem on
a class of minimal homeomorphisms of spaces X x @, where X is a compact
Hausdorff space and @ is an Abelian compact group. In the case X = G
= §' the theorem has been formulated in [1]; unfortunately, the proof
is incomplete. Moreover, an example of orientation reversing minimal
homeomorphism of the two-torus is presented.

1. Let Y be a compact Hausdorff space and let Q: ¥ — Y be a con-
tinuous transformation. A subset M < Y is said to be minimal if M is
closed, non-empty, invariant and for every ye M the set {Q"(y):
n =0,1,2,...} is dense in M. A transformation Q is said to be minimal
if the whole space Y is minimal.

The following trivial lemma holds:

LEMMA 1. Let Y be a compact Hausdorff space and Q: Y — Y a con-
tinuous transformation. If Q is minimal and f a continuous complex-valued
function on Y such that foQ = f, then f i8 constant.

Let X be a compact Hausdorff space and @: X — X a minimal homeo-
morphism. Let G be an Abelian compact group and I' the group of all
characters of @. Let ¢: X — G be a continuous transformation. We define
a homeomorphism S8: X xG@ - X x@G by

8(z,9) = (Q(‘”)’ g'?’(a’))°
THEOREM. The following statements are equivalent:
(a) S ¢8 minimal;
(b) for any y € Iy x # 1, the functional equation
(%) u(Q(2)) = u(z) 1 (¢ (2))

has no continuous solution w different from 0.
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Proof. (a) = (b). Suppose that equation (+) has a continuous solution
for some y € I', y = 1. Then the function

1
f(z,9) = “(w)m

8 continuous and is not constant; moreover,

1
f(S(:v, 9)) = “(Q(w))m = “(“’)'Z(‘P(‘”)) = f(z, g).

1
2(9) 2 ())
This shows that 8§ is not minimal.

(b) = (a). Suppose now that 8 is not minimal. In this case there exists
& minimal set M # X X G (see [3]).

Let =t X XG@— X be the projection on the first factor. Let
yvr: X XG— X X G be given by the formula

vi(®,9) = (z,h-g) for all he@.

We see that y;' =y, and Soy, = y,08 for he@. If (z,9) e M,
then

my (M) = 7, ({8 (2,9): n =0,1,2,..}) = {@"(z): » = 0,1,2,...} = X,

since @ i8 minimal and M* = {geG: (v,g9) e M} # O for all x € X.
Let us choose an element g, € M” for any # € X. We shall prove that

H, =g;'M* = {g;'h: he M7}
is a subgroup of @ for z € X. If g;'h € H, and h € M?, then
¥,-1,(@ 9:) = (#,h) e M.
x
Obviously,

¢g;1h(M) = vgglh({ﬂ"(m, g:):n=0,1,2, })

= {8 (@, h):n=0,1,2,..} = M.

It is clear that ¢ € H, for all x € X.
If g;'h,eH, (¢ =1,2, h; € M*), then

Vo (M) =M and oy, (M)=M (=1,2).

Therefore, ¥,o1, (zy hy) € M and h7'g.h, € M*. Then
1 9z

gx(.‘];lhl)-lg;lhz € M* and (9;1"1)_19;1}‘2 €eH,,
which establishes our statement.
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If g;'he H,, then y

-1
g h

(v, 9,) € M. Therefore,

9,9-'he MY and g;'heH, forall o,yeX,

and we conclude that H, = H, = H for all s,y € X.

It is easy to see that H is a closed subgroup and H # G.

Let F = G/H be a factor group. Let n: G — F be a natural projection.
Clearly, the group F is compact.

We define two continuous transformations

%2: X>F and idgxn: XxG—>XXF

(@) = g,-H = M® and idgXx=(z,9) = (2, n(9)).
It is clear that idx X = is continuous and that
n(g9,) =9.,-H = M*, =(g9,-h) =M*"-H = M"for heH.

We see that A = {(z,{(#)): 2 € X} =idx X #(M) is a closed set.
Therefore ¢ is continuous.

If gen“(C(Q(w))), then x(g) = {(Q(»)) and (Q(x),9)e M. We see
that (o, (p(2))"'g) e M (since 8~'(M) = M) and =(lp(x))"g) = ¢(a).
Therefore,

(g) = {(a) 7 (p(2))

and we conclude that

L(Q(@) = L(2) % (p(2)).
It is easy to see that Card F' > 1. In this case there exists a charac-
ter y: F — §' such that y # 1.
Let y: G — 8" be given by the formula y = yoa. Clearly, y € I' and
x#F1.
Let w = yo! # 0; we see that « is a continuous function and

uoQ(2) = 7(¢(@(@) = x (¢ (@) z(p(2))) = u(2)z(p(=),

which means that « is a solution of equation (*). Thus the theorem is
proved.

2. Example of orientation reversing minimal homeomorphism of
the two-dimensional torus.

LEMMA 2. Let Y be a compact connected Hausdorff space and let
Q: Y Y be a homeomorphism. Then the following statements are equi-
valent:

(a) @ 18 mimimal;

(b) Q% = QoQ is minimal.
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Proof. The implication (b) = (a) is trivial.

(a) = (b). Suppose that @* is not minimal. Then there exists a non-
empty closed subset F' — Y such that F # ¥ and @*(F) = F. In this
case FNQ(F) and FUQ(F) are closed, invariant subsets of ¥. If FNQ(F)
=@, then FUQ(F) # Y since Y is connected and we conclude that @
is not minimal.

"~ LEMMA 3. Let R be the set of all real numbers and let Z be the set of
all integers. Let B be an irrational number and let b = 6*™. Let p: 8' — '
be a continuous transformation and let f: R~ R be a continuous function
such that

1
@(e¥™%) = &™@  and f f(x)dz = 0.
0

Then the following statements are equivalent:
(a) for some k # O the equation

(1) u(bz) = u(z) 9*(2)
has a continuous solution u # 0;
(b)- for some k #* O the equation
(2) r@+p)—r(@) = k-f(@)
has a continuous solution r such that r(x+1) = r(x) for all x € R.

Proof. (a) = (b). If v #* 0 is a continuous solution of (1), then |u(2)|
is constant since z — bz is a minimal transformation of the unit circle.

Now we assume that [4(2)| = 1 and we may consider  as a contin-
uous map of 8! into 8'. In this case there exists a continuous function
r: R'— R such that, for some Il € Z,

r(x+1) =r(@)+! and u(e*™) =&™@ for xeR.
Since u is a solution of (1), there exists p(x) € Z such that
r(@+p) =r(@)+k-f(x)+p(x) for all zeR.

The function p is continuous and p(x) € Z, so p(x) must be a constant
function, say p(z) = m, € Z. Thus

r@+8)—r@ =k-f@+m and 1§ = [r@+phde— [ r@)ds =m,.
0 0

Since g is irrational, the equality I8 = m, implies | =m, = 0 and
r is a solution of (2), r(z +1) = r(z) for all z € R. B

(b) > (a). If equation (2) has a continuous solution » for some k s 0;
then u (6*™%) = ¢*™"@ ig a continuous function and « is a solution of (1) for
gsome k # 0, which completes the proof.
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Now we construct the required example.
Let (v,)>_, denote the sequence v, = 2, v,,, = 2 ™—1. Let

oo
a= 22‘2 , M, =2"'form>1 and a_, = —n,.

It is easy to see that

m—1
[mpa] = 2 22 % 4rm s
k=1
and
—g'm+1 -
pa]—n,a—3 <2:2727" w1 2:27™m2  for m>1.
Generally,

Npa—[nya]—3] < 2:27"2  for m e Z\ {0}.
.By Mean-Value Theorem applied to the function
h: |0, n,a—[n,a]l—3}|] > R?, h(z) = (cos2nuz, sin2nw),
we obtain
|exp{2mn a}+1| = |h(In,a—[n,a]—}])—(0)
< 2xim,a—[n,al—} <4x2""™m2  for all meZ and m # 0.
Let
g(@) = Zl—(exp{zmn a} +1)exp {2 win, o).

m#0

Tt is easy to see that g: ‘R — R and ¢ is a C®-function, since

2 (2nn,)t

2nml2
m=1

is convergent for ¥ =1, 2, ...
We set &(62™%) = ¢*™®); obviously, &: §' — 8' is a (®-transformation.
We define 8: T? - T? by
8(z, w) = (az, W&(2)), where a = ™

We see that § is orientation reversing homeomorphism of the two-
torus

.- Since 77 is connected, the map § is minimal if and only if S’ is mm1mal
(Lemma, .2). We have

8 (2, w) = (azz7 %_UE(Gz)Fz))-
Let ¢(2) = &(az)-£(2), i.e.,
¢ (exp {2 wiz}) = exp[2xilg(x+ a) —g(x))}.
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Let
f(x) =g(x+a)—g(x) = ZL(exp{2nin 2a} —1)exp {2 nin,z}.

m+#0

Obviously, f is a C*-function,
[fl@)dz =0 and f(z+1) =f(a).

Now we consider the following question: does there exist a contin-
uous solution of the equation

(3) r(@+2a)—r(z) = k-f(),

where k % 0 and r(r+1) = r(z) for all z € R?

We notice that the transformation Q: 8! — §', defined by Q(z) = a’z,
is minimal.

Applying the Fourier expansions to (3) we get the following equation:

Zb,exp 2 nil(2+2a)} — Z bexp (2 nilz}

leZ leZ

k
= 2 T (exp {2 win, 2a} —1) exp {2 win,, z},
m=%0

D by(exp@nil2a} —1)exp {2rils)

leZ
k
= —— (exp {2 win,,2a} —1)exp {2 nin, z}.
[m|
m+#0
Therefore,
lO ifl#m,,
b= k
! — ifl =m,,
lm|
which implies

r(z) = 2 Wklup {2rin,x}.

m#*0

We see that this function is a unique solution of equation (3) in
L*([0,1], ) for & # 0 (4 is a Lebesgue measure). However, 7(z) cannot
be equivalent to any continuous function, since
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(see [4]). Thus equation (3) has no continuous solution r such that r(x+1)
= r(x). Hence, by the Theorem and Lemma 3, the maps & and § are
minimal.

The author is indebted to Dr. W. Szlenk for suggesting the problem
and to Dr. M. Misiurewicz for useful talks.

Added in proof. After the paper had been submitted for publish-
ing we came to know that in the case where X and G are metric spaces
the Theorem has been proved by W. Parry (Compact abelian group extensions
of discrete dynamical systems, Zeitschrift fiir Wahrscheinlichkeitstheorie
13 (1969), p. 95-113).
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