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In 1921 Blumberg [2] proved that for each real-valued function
f defined on the real line R there is a dense set D < R such that f|D,
the restriction of f to D, is continuous. In 1960 Bradford and Goffman
[3] proved that the same property holds for each metric Baire space.
In fact, more gencral versions are known (see [1], [4], [8]).

Following Hayworth and McCoy [4] we say that a space X has Blum-
berg property with respect to a space Y if for every function f: X - ¥
there is a dense set D < X such that f|D is continuous. The aim of this
note is to give some examples of spaces which have the Blumberg property
with respect to each space with a countable base. We also characterize
those linearly ordered topological spaces (LOTS’s) with a dense order
(i.e., if a <'b, then there is a ¢ such that a < ¢ < b) which are Baire, are
the union of < 2” nowhere dense sets, and have Blumberg property with
respect to each space with a countable base.

1. Notation. Let f and g be families of subsets of a set X, # € X, and
A < X. Then

(a) f& g(fisa refinement of g) iff for each u € f there is a v € g such that
%< o,

(b) f is a partition of X iff | Jf = X and, for each u,vef, u =9
or unv =0,

(¢) fag = {unv: uef,veg},

(d) f1A = {und: uef},

(e) fA = J{uef: unA #0}, fr = f{x}.

2. MAIN LEMMA. Let F = {f,: n< o} be a sequence of finite parti-
tions of a Baire space X. Then there are a dense G,-set D = X and sequences
G ={g,: n< w} and H = {h,: n< w} of partitions of D such that

(1) g,.41 & 9, and each g, i8 an open partition of D,

(2) hyyr & hyy b, & g,y by, & folD and each h, is a family of subsets
of X being of the second category at each of its points,
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(3) elpv = u whenever veh,,uecg,,and v< u.

Conditions (1)-(3) imply that

(4) there is a set Z = D such that wunZ + @ for each u e \ J@, and
o \Z = h,|Z for each n < w.

Proof. Without loss of generality we may assume that f,,, & f,
for each n < w. Decompose each set w € f, into sets w’ and w’’ in such
a way that w’ is of the first category in X and w’’ is of the second category
at each of its points. Removing from X all the sets w’, we get a dense
subspace Y < X which contains a dense G,-set such that each partition
fa| Y consists of sets of the second category in X at each of its points.
For each w € f,| Y let us put w° = Intyelpw and fy = {w°: w e f,}. Each
13 is a finite open covering of ¥. Removing from Y all the sets of the form
clyw —w® w e f,, n < w, we get a set D = Y such that D contains a dense
G,-set in X and f|D is a clopen covering of D. We may assume that D is
a dense G,-8et in X. For each # € D and w € f) put

w(@) = {wefr: zew}—J{wefy: = ¢w}.

The family g, = {w(z): v €e D, w ef,} is a finite partition of D. Let
us put h, =g, Af,|D. By the definitions, families G = {g,: » < o} and
H = {h,: n < o} fulfil conditions (1) and (2). We shall show that condition
(3) is also satisfied. Let v € h, and w € g, with v < u. Therc is a w € f,, such
that ¥ = vNw. The set wNw? is dense in w°. By the definition of g, and
in view of uNnwnND # B we have u < w°ND. Since w° > clyw, we infer
that ¥ = uNnwnD is dense in % (because D is dense and G, in X and wND
is of the second category at each of its points).

Now we shall show that conditions (1)-(3) imply condition (4).

Let {J @ = {u,: a< B}. Suppose that for some a < § there have been
defined sets Z, for each ¢ < a such that

(i) Z,cZ,y<é<eq,

(i) w,nZ, +# 9,

(iii) for each =,y € Z,, h,x # h,y implies g,z #g,¥y.

Let A =J{Z;:¢<a}. If u,n4 #0, put Z, = A. If u,n4 =@,
then V,, = 4, —g,A4 # 0 for some m < w. Let k¥ be such a minimal
number m. In case ¥ = 1 we choose an arbitrary point z e ¥V, and put
Z, = Au{z}. Then g,2Nng,z =@ for each z e A, n < w, because {g,A:
n < o} is a decreasing family of clopen sets in D. And in case k¥ > 1 there
is a ¥y € A such that h,_,y is dense in g,_,y and V,Nng,_,y # . Since V, is
open in D, there.is a 2z € V,,Nh;_,y. Let Z, = A v {}. Taking into account
the definition of the number k& and using the fact that {g,4: n < w}is a
decreasing family of sets, for cach ¢ > k and v € A we have g,xNng;z= 9.
If i< k, we have h;z = h;y because h,_,z2 = h,_,y. Hence, if h;zNnh;z
=, then hxnh;y =O for each r € A. Since z, y € A, by induction
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we obtain g;zNg,y = O. Hence g;xNg;z = O (because g,y = g;2 for cach
i < k). Thus condition (iii) is satisfied for Z = AU {z}.

Let us put Z = | J{Z,: a < B}. Condition (iii) implies that h,rNZ
= g,2#NZ for each x € Z, but this means that h,|Z = g,|Z.

We say that S is a o-disjoint pseudobase if S is a pseudobase and
8 = |J{s,: »< o}, where each s, is a disjoint family.

The following theorem of White [8] (see also [1] and [4]) is an easy
consequence of the Main Lemma:

THEOREM 1. If X is a Baire space which has a o-disjoint pseudobase,
then X has Blumberg property with respect to each space with a countable
base.

Proof. Let f: X -~ Y be a map into a space Y with a countable
base {w,: n < w}. Applying the Main Lemma for the sequences F = {f,:
n< o}, f, = {fw,, X—f'w,}, of two-element partitions of X, we
get a dense G4,-set D < X and sequences H = {h,: n< w} and & = {g,:
n < w} of partitions of D satisfying conditions (1)-(3) of the Main Lemma.
Let 8§ = {s,: n < w} be a o-disjoint pseudobase in X. Without loss of
generality it can be assumed that each 8, is a partition of a dense and open
set D, = |Js,. Clearly, a set D' = DN (\{D,: n < o} is dense and @, in X.
Moreover, sequences g, A 8,|.D and h, A8, |.D’ fulfil conditions (1)-(3) of the
Main Lemma and B =|J{g,A8,|D’": n< w} is a pseudobase for the
space D’. From (4) of the Main Lemma it follows that there exists
a set Z < X such that unZ # O for each u € B, i.e. Z is dense in X, and
9,A8,|Z = h,A8,|Z, but this implies that f~'w,NZ is open in Z. Thus
f1Z is a continuous map.

Now we shall use Theorem 1 for an internal characterization of some
LOTS’s which have Blumberg property with respect to each space with
a countable base.

THEOREM 2. Let X be a LOTS with a dense order which is a Baire space
and which is the union of <2” nowhere dense sets. Then X has Blumberg
property with respect to each space with a countable base iff X contains a dense
G; metrizable subspace.

Proof. Any regular space which contains a dense metrizable subspace
has a o-disjoint pseudobase. Consequently, by Theorem 1, if X contains
a dense G, metrizable subspace, it has Blumberg property with respect
to each space with a countable base.

Now assume that X has Blumberg property with respect to each
space with a countable base. In particular, X has Blumberg property
with respect to the reals R. Since X is the union of nowhere dense subsets,
X has no isolated points. Now we can assume that X is the union of x,
% < 2°, pairwise disjoint nowhere dense sets, say X = | J{F,: a< x}.
Let {y,: a < x} enumerate some distinct elements of R. Define f: X -~ R
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by letting fx =y, if x € F,. Assume that D < X is dense and f|D is
continuous. Let {w,: » < o} be a countable base in R. Choose, for each
n, an open set u, < X such that (fD)"'w, = u,ND. Since X is a LOTS,
each u, and X —clu, are the unions of families #, and £,, respectively,
consisting of pairwise disjoint open intervals. We set S, = #,UZ, . For
each finite subset ¢ = {,, ..., n,} of natural numbers » we put

8y = 8, A8 A o Ay

Clearly, each 8, is a disjoint family of open intervals and § =
{8;: t € [w]<"} is countable. Moreover, | ) 8; is dense and open in X. Let
Y =N {US8: t e [w]<"}. Since X is Baire, Y is dense and G,. We show
that S|Y is a base in Y. To see this, let p € ¥ and let 4 = (a, b) be an
open interval containing p. Assume, on the contrary, that é ¢ 4 for each
é such that p € 6 € 8. This means that either a € § or b € J for each 4 such
that p € 6 € 8;. Assume a € J for each 4 defined as above. Since the order
in X is dense, the interval (a, p) is not empty. Hence (a, p)NnD # @.
Let us choose a point q € (a, p)NnD. Next, let us choose from £, (if
it is possible) an element which contains ¢ and let %, consist of all such
elements. We have (%, < f~'fq < F, for some a. Hence ()%, is nowhere
dense, which implies ()%, = {g}, the order in X being dense. Therefore,
there are an n» < w and ¢’ € #£, such that g € 8’ and p ¢ 6’. Hence there
18 a 6 € 8, such that p € 4 and ¢ ¢ 4. Since the members of S, are disjoint,
0nd’ = @. However, in such a case, a € §; a contradiction.

Now, since §|Y is a o-disjoint base, ¥ contains a dense G, metrizable
subspace.

COROLLARY (see also [7]). The Souslin line is not Blumberg.

3. Remark. Repeating the second part of the Main Lemma one can
obtain the following result:

Assume that any sequences G = {g,: n< w} and H = {h,: n< w}
of partitions of arbitrary cardinality fulfil conditions (1)-(3) of the Main
Lemma and the condition

(%) for each A = X with |A| <t and for each nom-emply open sel
uc X,

u—({9,4: < o} # 0.

Then

(B) for each family T of open sets in X with |T| < v there is a set Z < D
such that unZ # @ for each w e T, and g,|Z = h,|Z for each n < w.

The Remark implies

THEOREM 3. Let X be a Baire space and let # be a countable family
of open subsets of X. Then for each function f: X — Y into a space ¥ with
a countable base there exists a subset D < X such that unD # @ for each
u € X, and f|D is continuous.
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This theorem is related to a result by Sierpinski and Zygmund [5].
They proved that under the continuum hypothesis there exists a function
f: B — R such that if f| D is continuous, then D is countable.

THEOREM 4. A Baire space X is a Blumberg space whenever weight
of X 18 << v and the topology of X is an expansion of a metrizable topology
T such that, for each A = X, |A| < v implies that clp, A is nowhere dense
in X.

A result analogous to this theorem (but incorrectly formulated)
has been obtained by the second-named author in his doctoral disserta-
tion [6].

THEOREM 5. A Baire space X is a Blumberg space whenever weight
of X is <t and there is a sequence {s,: n< w} of open coverings of
a dense @Q,-s6t Y < X such that, for each A < Y, |A| <t implies that
{8, A: n < w} is nowhere dense in Y.
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