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Introduction. Some of the most important recent advances in opti-
mization have come about as a result of systematic replacement of smooth-
ness assumptions by convexity. This is exemplified by the work of Rockafel-
lar [6]. It is natural to ask whether analogous results can be proven without
either smoothness or convexity. A general theory of necessary conditions for
such problems has been obtained [1]. The conditions are expressed, in part,
by means of generalized gradients.

The classical inverse function theorem gives conditions under which a C”
function admits (locally) a C” inverse. The purpose of this paper is to give
conditions under which a Lipschitzian (not necessarily differentiable) func-
tion admits (locally) a Lipschitzian inverse by means of the characterization
of the plenary hull of the generalized Jacobian matrix.

1. Locally Lipschitz functions. Let f: B — R be locally Lipschitz
on a bounded subset B of R". It is known [7] that such a function has at
almost all points z a derivative (gradient), which we denote by V f(z). It
is easily verified that the function V f is bounded on bounded subsets of its
domain of definition.

Let now F : O — R™ be locally Lipschitz, O a nonempty open subset of
R™. One is tempted to define the generalized derivative of F = (f1,..., fm)
at z¢9 € O by simply considering [ f1(zo), . - ., fm(z0)]* (for undefined con-
cepts the reader is referred to [1]).

The usual m X n Jacobian matrix of partial derivatives, when it exists, is
denoted by JF(z). We topologize the vector space of m X n matrices with
the norm

|M|| = max|m;;] where M =(m;;),1<i<m,1<j<n.

A mathematical tool is what F. H. Clarke called the generalized Jacobian
matrix, defined in the following way:
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DEFINITION 1.1. The generalized Jacobian matrix of F' at zo € O, de-
noted by JF(zg), is the convez hull of all matrices M of the form M =
lim, oo JF(z,) where z,, converges to zo in dom F’.

In this definition, dom F’ denotes the subset of full measure of O where
F is differentiable.

JF{(zo) is a nonempty compact convex subset of the vector space of
m X n matrices, which reduces to {JF(z¢)} whenever F is C! in some
neighborhood of zo.

DEFINITION 1.2. JF(zo) is said to be of mazimal rank if every M in
JF(zp) is of maximal rank.

2. Plenary hull of the generalized Jacobian matrix. Let us denote
by {( , )) the inner product on the vector space of m X n matrices defined
by ((M,U)) = Trace of M o U*; it follows from Definition 1.1 that for all
U € Rmxn

(2.) max (M,U) = limsup (JF(2),U)
MeJF(zo) s€domF

Consider U € R™*™ of the form u® v : z — (u,z)v, where u € R™ and
v € R™. Then (M, u® v)) reduces to (Mu,v) and (2.1) can be rephrased as

(2.2) max (Mu,v) = limsup(JF(z)u,v).
MGJF(xo) g;;;oﬁ"

We can use results on chain rules so that the left-hand of (2.2) appears as
the generalized gradient of a particular real-valued function. Given v € R™,
the generalized gradient of F, : z — (F(z), v) at 2o can be exactly described

as OF,(zo) = J*F(zo)v ([3]). Therefore, for all u € R, we have
(2.3) max (u, M‘v) = FJ(zo;u) (see [1, Definition 1.3]).
M€eJF(zo)

Although J F(zo) is convex and compact, one generally cannot separate
an My from JF(z,) by using only linear mappings (in R™*™) of the form
v ® v, u € R®, v € R™. This led Sweetser [8] to introduce the following
definition:

DEFINITION 2.1. A subset A C R™*" is plenary if it includes every M
in R™*™ satisfying Mu € Au for all u € R™.

Since the intersection of plenary sets is plenary, Sweetser defined the
plenary hull of A, denoted plen A, as the smallest plenary set containing
A. When min(m,n) > 1, plen JF(zo) is a convex compact (plenary) set of
matrices containing J F(zo).
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Since JF(zo)u = [plen JF(zo)Ju for all u € R™, Hiriart-Urruty and
Thibault [4] formulated the following theorem:

THEOREM 2.1. Let u € R" and v € R™. Then

(2.4) max (Mu,v) = F°(zo;u,v).
Meéeplen JF(zy)

In other words, M € plen J. F(zo) if and only if
(Mu,v) < F°(z;u,v) for all (u,v) € R® x R™.

To summarize, let us say that plen J. F(z¢) is the convex compact (plenary)
set of matrices satisfying [plen JF(zo)Ju = JF(zo)u for all u € R*. When
= (f1y+.-, fm)* we have

JF(z0) C plen JF(z0) C [0f1(%0), - - -, fm(z0))t -
The set [8.f1(x0),...,8fm(x0)]* is obviously convex, compact and plenary.

It actually yields the same image set as JF(zo) does when the considered
vectors u are the elements e; of the canonical basis in R*. In other words,

{z3,[25,. .., 2., 2]t € TF(20)} = 8fi(z0) ([3)).

3. The plenary hull of JF(z,) and the inverse function theorem.

THEOREM 3.1. Let F : O — R", O C R". If every matriz M in
plen JF(zo) is of mazimal rank, then there ezist neighborhoods U and V

of z¢ and F(zo) respectively, and a Lipschitzian function G : V — R" such
that for all (u,v) € U x V, F(u) = v if and only if G(v) = u.

When F is C!, JF(zo) reduces to JF(zo) and the function G above is
necessarily C! as well. Thus we recover the classical theorem.

Remark 1. This theorem remains true (without modifications in the
proof) if we impose the maximality of rank for all M € JaF(zo) where

A C dom F' has complement in O of null measure and J4F(zo) is defined
as in (1.1) except that the points z, belong to A only.

Remark 2. By the very definitions,
daF,(z0) = JyF(zo)v ([3])-

It is known that the generalized gradient of a real-valued function does not
change when we alter the values of the function on a set of null measure [1,
Proposition 1.11]. The desire to make the generalized derivative insensitive
to sets of null measure led B. H. Pourciau [5] to alter Clarke’s original
definition by considering the Lebesgue set Leb F’ of F' instead of dom F’
in the definition of JF(zo), but, since F' is locally in L*(0,R™), almost
every z in dom F’ belongs to Leb F'.
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Remark 3. Let Aand J4F(zo) be as in Remark 1. Then plen J 4 F(zo)
= plen J F(zg). So, plen JF(zy) is insensitive to sets of measure zero.

Proof of Theorem 3.1.

LEMMA 1 (An exact chain rule in the finite-dimensional case [5].) Let F :
R™ — R™ be a locally Lipschitz function and let g : R™ — R be continuously
differentiable. Then

d(go F) = J*F(z0)Vg(F(zo)).

LEMMA 2. Let 3 be a positive number. Then for all z sufficiently near
zo, plen JF(z) C [plen JF(zo) + M (0,1)] where M(0,1) denotes the unit
ball in the vector space of m X n matrices.

This is a direct consequence of the definition of the plenary hull of the
generalized Jacobian matrix.

LEMMA 3. There are positive numbers r and A\ with the following prop-
erty: given any unit vector v in R™, there is a unit vector u in R™ such that,
whenever z lies in o + B and M € plen JF(z¢), then (Mv,u) > A for all
M, where B denotes the open unit ball in R™.

Proof. Let X, denote the unit sphere in R®. Then the subset
(plen JF(z))X, of R™ is compact and does not contain 0 since plen J F(z¢)
is of maximal rank. _

Hence for some A > 0, (plen JF(20))X, is distant at least 2\ from 0. For
positive 3 sufficiently small, [plen JF(zo) + SM(0,1)])Z, is distant at least
A from 0.

By Lemma 2, it follows that for some positive r,

z € 2o + B = plen JF(z) C plen JF(zo) + SM(0,1).
We may suppose r chosen so that F satisfies the Lipschitz condition on
9+ rB.

Now let a unit vector v be given. It follows from the above that the
convex set [plen JF(zo) + SM(0,1)]v = [JF(zo) + BM(0,1)}v, for all v
in R™, is distant at least A from 0. By the usual separation theorem for
convex sets, there is a unit vector u such that {(u, Mv) > A for all M €
plen J F(z).

LEMMA 4. If 2, and 3 lie in 2o + B, then

|F(21) - F(z2)|| 2 Allz1 — 22| -

Proof. We may suppose z; # z; and by the continuity of F that
z1,T2 € 29 + TB.

Set v = (23 — 1)/||z2 — 21]|, @ = ||z2 — 21]| so that z; = 21 + av. Let
7 be the plane perpendicular to v and passing through z,. The set P of



INVERSE FUNCTION THEOREM 19

points z in zo + rB where F’ fails to exist is of measure zero, and hence by
Fubini’s theorem, for almost every z in 7 the ray z + tv, t > 0, meets P in a
set of null one-dimensional measure. Choose an z with the above property
and sufficiently close to z, so that z 4+ tv lies in z¢ + rB for every ¢ in [0, a].
Then the function ¢t — F(z + tv) is Lipschitzian for ¢ in [0, a] and has a.e.
on this interval the derivative JF(z + tv)v. Thus

F(z + av) - F(z) = fJF(z + tv)vdt.
0

Let u be as in Lemma 3. We deduce that

(u, F(z + av) — F(z)) = <u, fJF(x + tv)v dt> > f/\ dt = Ao
0 0

Recalling the definition of o, we arrive at
|F(z + av) - F(z)|| 2 Aljzz —24]|.
This may be done for z arbitrarily close to z,. Since F is continuous, the
lemma follows.
LEMMA 5. F(z¢ + rB) contains F(zo) + (rA/2)B.

Proof. Let y be any point in F(zo) + (rA/2)B, and let the minimum
of ||y — F(z)||?> over zo + 7B be attained at z. We claim that z belongs to
z9 + rB. Indeed, otherwise

- TA[2> ly = F(zo)l| 2 [|F(z) = F(zo)ll - lly - F(2)ll
2 M|z = zol| = lly = F(=)Il
> Ar — ||y = F(zo)|| > Ar —rA/2=1A/2,

which is a contradiction. Thus z yields a local minimum for the function
lly = F(z)||?, and consequently [1, Corollary 1.10],

0 € dlly — F(z)||*.
We now use Lemma 1 to conclude that 0 belongs to the set
J'F(z)(y - F(z)) (3],

which coincides with [plen J* F(z)](y— F(z)) for all vectors in R® by Theorem

2.1. But Lemma 3 implies that every matrix in plen JF(z) is nonsingular,
hence the above is possible only if F(z) = y.

We now set V = F(z¢) + (rA/2)B, and we define G on V as follows:
G(v) is the unique z in z¢ 4+ 7B such that F(z) = v. For U we can choose
any neighborhood of zy satisfying F(U) O V. The theorem is now seen to
follow, since Lemma 4 implies that G is Lipschitz with constant A~!.
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