COLLOQUIUM MATHEMATICUM

VOL. XIX 1968 FASC. 1

ON FINITE-DIFFERENCE APPROXIMATIONS
TO STEADY-STATE SOLUTIONS
O THE NAVIER-STOKES EQUATIONS

BY

A. KRZYWICKI (WROCLAW)

In papers [2] and [3] some convergent finite-difference approxi-
mations to solutions of the non-stationary Navier-Stokes equations
have been given. We shall show here that a similar construction also
for steady-state solutions of the same equations is possible, more preci-
sely, for solutions of the following boundary value problem

N _,; 0%
(1) —va @/+Z u" oA = —VPHE, V=0, U=V,
considered in a domain 2 of the Euclidean 2- or 3-dimensional space.
Here » is a positive constant, S denotes the boundary of Q, # (vector)
and £ (scalar) are unknown, # and ¥ are given vectors defined on 2
and S resp. (we shall constantly use the term wector when saying of
vector-valued functions.) %' denotes the i-th component of vector %
and finally #' are coordinates of the point .

The principal purpose of this paper is to establish the applicability
of some of arguments of papers [2] and [3] to the case under consideration.
Therefore we do not insist on considering a possibly most general situ-
ation. All results of the present paper are equally valid in 2- and 3-di-
mensional cases. However, for the sake of simplicity, we discuss 2-di-
mensional case only, pointing out necessary modifications, if needed,
when passing to 3-dimensional space. It will be clear to the reader that
some of the results presented here are finite-difference modifications of
known facts: (7) corresponds to the known decomposition of L,(0)-space,
the proof of Theorem 1 is a modification of Fujita’s procedure [1], and
Theorem 5 is a finite-difference analogue of a result of LadyZenskaja
[4]. To avoid some unnecessary repetitions we shall often refer to paper
[2] which precedes immediately this paper in the present fascicule. We
shall also use most of notations of [2] (see especially section 2 of [2]).
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In particular, the functions considered on sets of grid points will be denoted
with small letters. The inner product, scalar multiplication, orthogonality,
if referred to functions considered on a grid, will be understood in the
sense of definition (3) of [2]. When referred to “normal” functions, they
will be understood in the usual L,(2)-space sense. Different finite-dif-
ference approximations introduced in [2] will be also used here and will
be denoted with the same letters as in [2].

1. Consider in E? an orthogonal grid G, of points with coordinates
&= 4 nh, h denoting a positive constant, » =0, 1, 2, ... Given a domain
2 < K2, Iet £, be the union of all elementar squares, L.e. closed squares
with corners on @, and sides equal to &, lying in Q. The set 2, ~ G will
be denoted by w, the set of all grid points lying on the boundary of 2,
will be called boundary of » and denoted by s. The sets of grid points
lying on individual components of the boundary of 2, will define com-
ponents s; of boundary of s. Finally, the set o™ = w\s will be called
interior of w.

A vector v = (v', v?), due to our convention of notation defined
on G4, will be called solenotdal, if it satisfies the equation divv = vt =0

+1
(remember that f; = ' (f—f), see [2]). Solenoidal vectors of a special
kind will be of use in the sequel. They will be denoted by r = r(z— x')
and their components will be defined in the following way:

+2

+1
M =48, =h'(6—6), r2=—6=—h"Yé—19),

where 6 = é(x—2a'), ®, ¥" <G, denotes the function which is zero every-
where except for the point #' where § = 1. r(x—a') is different from
zero on the set suppr consisting of three points {a', 2'—he', z'— he'}
upon which it assumes the values (—1,1), (0, —1) and (1, 0), resp.
(e' denotes the unit vector of the z'- axm) Each r 1s solenoidal and »’s
corresponding to different points 2’ are linearly independent.

A line I' consisting of sides of elementar squares will be called simply
line (strictly speaking only the grid points lying on I" will be considered).
I' provided with an orientation will be called oriented line. It consists
of oriented segments y of the grid of length k, each y defined by a segment
[ar:,,—hev x,] and the number e,, &, = 1 if the orientations of y and of
the #'-axis are the same, ¢, = —1 1f opposite. For a given vector » and
a given oriented line I"= (Jy we can form the expression

Y

2) I(v, I') = Y e,v™(,)

which imitates the curvilinear integral. If I' is an oriented line joining
the points #* and «, the orientation being from #* to x, then I(v, I'),
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considered as a function @(x) of x, satisfies the equation @; — o', or
simply grad @ = v, where grad ® = (®;, @;).

Finally, a line I" will be said to lie in the set o if all its grid points
lie in .

2. Assume that the domain £ < E?, where the problem (1) is consi-
dered, is bounded and the number of components of its boundary is
finite. Assume further that the set o™ which was defined before is for
any h connected which means that each pair of its points may be joined
by means of a line lying in it. Assume, moreover, that ™ is of the form

int

o = [ supp r(z—a’).
=

If not, we could change Q, by casting away some of its elementar
squares so that o™ corresponding to the new £, would be of the desired
form. We should then assume that mes (2\0Q;) — 0 when h — 0.

Denote by j(w) the class of all solenoidal vectors defined on o and
vanishing on s (solenoidal in » means: solenoidal in all points of w where
div may be applied).

LEMMA. If a vector v defined on w is orthogonal to all solenoidal vectors
vanishing on s, i.e. if

(3) (v, w) = h* ¥Yow = 0

for any wej(w), then v = grad @ in wi”t, where @ is a function defined
on the set
o* = ) suppr(xz—a')

mlemint

up to an additive constant.

Proof. Put w = rej(w) into (3). The result, when explicitely writ-
ten down, has the form of the equation

(4) v = v’

valid in any point # such that suppr(z—z') < ™. It follows from
(4) that I(v,I), defined by (2), vanishes if I' is (arbitrarily oriented)
boundary of an elementary square. Fix a point 2®e¢o™ and join it with
any other point xew™ by means of an oriented line I’ lying in o™, its
orientation being from #® to x. I(v, I) is, due to the preceding remark,
a function @(x) of # only in any simply connected part of »™ containing
o and grad @ = v due to the definition of I(v, I'). To show that D ()
is single valued also in the case when o™ is multiply connected we may
proceed as in the similar situation in “‘continuous” case. Let us cut o™
by means of lines so as to get a simply connected set w, and a single
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valued function @, on it. Consider one of the cutting lines /. and assume
that it contains segment [z —he*, z”’ +2he*]. Assume for a moment
that there exists a solenoidal vector w which vanishes outside of a given
connected set lying in o™ and having the form of a ring. Let, moreover,
w be zero along I', except for the point #' where w' is different from

zero, say w'(z'’) = 1. For any vej(w) and any » we have
(5) (grady, v) = —(y, dive) = 0,

and the values of y involved in (5) are those taken in points of o* only.
1f we apply the above formula to @, constructed before and take into
consideration the cut of 7, then, putting » = w, we get

0 = (grad®,, w) = —(D,, divw)+w'(z"') (&~ —dT),

where @~ and @ denote the values of @, at the point ' when we approach
it from the left or right side resp. Hence we get, due to the properties
of w, @ = @' and so @, has no jump when passing through I,. This
shows that @ is a single-valued function in all »™. It immediately fol-
lows from the definition that @ may be extended to o*.

We shall now establish the existence of the vector w with needed
properties by making use of the known similar construction in “conti-
nuous” case: there exists, for any given simple connected domain 7,
having the form of a ring cutted by [, a regular divergence free vector W
vanishing outside of 7, and assuming along the cut ! (which presents
two different parts of the boundary of Z,) the same arbitrarily given
values (see [4], where the 3-dimensional case is discussed). It suffices
now to suppose that the total flux of W through [ is equal to 1, and that
supp W has a special form near the point 2'': it lies in a narrow strip
running parallelly to the x'-axis and crossing 7, between points z’’ and
&'+ he?. Moreover, supp W should be not too close to s. The desired w
will be given by a finite difference approximation of W provided by the
ormulas

w2+h :c1+h
(6)  wi@)=h"t [ W, Has, wta) =ht [ W(EaP)de.
2 xl

To end the proof of Lemma it remains only to show that the function @
is defined up to an additive constant. This is obvious: if v = grad®
= grad®’, then it follows that grad(®—@’) =0 on o™ and hence
@ = @'+ const due to the assumed connectivity of ™.

Lemma in connection with (5) leads to the following result: any
vector u defined on » may be expressed on the set o™ in the form

(7) u = v-+grad @,
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o
where wvej(w) and @ is a function defined on o*. The decomposition

given by (7) is unique, the function @ being defined up to an additive
constant.

3. The following two inequalities
(8) [[u]l < el
(9) 1Y ult < 6 P g

are valid for any vector w defined on o and vanishing on s. The con-
stants ¢, and ¢, are independent of # and h and in the case of ¢, —even
of . |u| denotes Euclidean length of vector «# and the remaining notation
is the same as in [2]. The both inequalities present finite-difference ana-
logues of known inequalities (see [4 ], p. 18-19) and may be easily derived
by adapting the proofs of the latters to our case.

4. We define for any triple u, v, w of vectors of the class j(w) the
following ftrilinear form

(10) A(u, v, w) = }h? 2 Z '1.{,'57)7-(14:".9-+ wi;-),
7

the first summation in (10) being, as usually, over all those points of o
where the summand is defmed Applying identities (11) and (13) of [2]

and the identity (uv); = u; v +uvi, we easily verify that A satisfies the
following identity:

(11) A(u,v,w) = —A(w, v, u).
In particular,
(12) Au,v,u) =0

for any w,vej(m). Applying twice Cauchy’s inequality to the form A,

we get
A (u, v, w) g( 5‘|ul)(h le )H"x

and hence, due to (9),

(13) |4 (1w, v, w)| < Feg([Jull lugll+ ol [[va]]) sl
In particular, relations (13) and (8) imply the inequalities
(14) |4 (1, v, w)] < Fego (g4 [0e]?) [well,

(15) A, w0, )] < eqey gl Jaegl,

o}

valid for any u, v, wej(om).



162 A, KRZYWICKI

Remark. In 3-dimensional space inequality (8) remains unchanged
(with a different constant only) and (9) is to be replaced by

Bl <[] |-

However, the form of estimates (14) and (15) remains unchanged;
therefore all the consequences of these estimates, in particular, Theorem 5
remain valid also in 3-dimensional case.

5. We agsume that the vector ¥ appearing in the boundary condition
imposed on the solution % of problem (1) is the value along S of a vector 4
defined and divergence free in a domain containing £ in its interior.
Let b denote the approximation of # given by formula (4) of [2] (or by
formulas (6) of the present paper if 4 is regular). The vector # appearing
in (1) is assumed to belong to I,(2). Its approximation constructed
in the same way as it was done in [2] (end of section 2) will be denoted
by f.

We shall now discuss a straightforward difference substitute of
the problem (1), namely the following system of non-linear finite-dif-
ference equations

(16) D=t (i)} = ~gradp 1,

(17) dive = 0,
with unknowns #, p, and u subject to the boundary condition
(18) Uls = bls.

Equations (16) are taken in all points of o™ whereas equations
(17) in all points of the set w* defined before. Note that the set w*, though
now differently defined, is identical with w* introduced in (2], p. 147.
We attach to our system an additional equation

(19) Zp =0

(and only this one due to the assumption that o™ is connected, comp.
a similar situation in [2]).

6. We shall prove the following

THEOREM 1. If h ds fized and b appearing in (18) satisfies for any

wej(w) the condition
(20) (A (b, w, w)| < alhwgl],

where a is a positive constant less than v, then the system of equations (16)-(19)
has for any b, f at least one solution w, p with u defined on o and P on w*.
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Proof. Let the vectors ¢, i —=1,2,..., N, form an orthonormal

0 (1 .
basis in j(w), (", ) = &, 8; denoting Kronecker’s delta. Assume u
be of the form

N
(21) w= Y &pDtb

where &; arve real coefficients to be defined. Taking the inner product
(in the sense of formula (3) of [2]) of both sides of (16) with %", we get
the equations

(22) (U, ¥) A (P, ey w) = (f, 9, i=1,2,..., N,

which after replacing « by the right-hand member of (21) and looking
at &, &,, ..., &y as unknowns, become identical with those discussed
by Fujita [1] and which have under condition (20) (which is to be applied
exactly as in [1], p. 70) at least one solution &, &,,..., &x. The last
assertion is equivalent to the existence of w in o satisfying equations
(22) and this, on the other hand, expresses the fact that the vector

(23) g = D {—ra+iu (ut )} —f

is orthogonal to j(w). Due to Lemma 2, g is in o™ of the form gradp
with p, due to (19), uniquely defined on w*. Thus there have been found w
and p satisfying equations (16)-(19).

Condition (20) is satisfied in the following two cases:

1% if either (i) max|b| or (ii) max|b,| is sufficiently small. This

results when estimating A (b, w,w) by using (i) or —A(w,w,b)
(= —A(b,w,w) due to (11)) by using (ii) and then applying Cauchy’s
inequality and the estimate (8);

2° if the vector b is a linear combination of vectors r. This corres-

ponds to the case when
b 0P

w2’ Oat
and in 3-dimensional space to the case when # = rotZ.

To show that in the case 2° condition (20) is satisfied, let us note

at first that the vectors of j(w) and those r’s whose supports do not lie
in o™ (the class of these vectors will be denoted by R,) are linearly inde-
pendent. Therefore assumption (21) may be replaced by

u= D Ey+ DB,

rERo
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where 7’s in the last sum are those only whose supports intersect the
boundary s of . Condition (21) takes now the form

(24) | Y BeAlry 0, w)| < ).

Each term A (r, w, w) of the above sum is equal to the sum extended
over (three) points 2'* lying in supp r of terms of the form

(25) bhe Y (10 w)
,f

provided "' ¢s, If #'es, (25) vanishes. Now to each #''¢s there exists
a point lying on s at the distance i where, due to our assumption, w = 0,
and therefore (25) may be rewritten as

£30 w0+ '),
7

Hence the left-hand side member of (24) may be estimated by
Ch ||wg|?, where O depends on max|f,|, and (24) will be satisfied for

sufficiently small & with « independent on & if max |g,| will be uniformly
r

bounded with respect to k. The last assumption will be certainly satis-
fied if
oD oD :
B = (5&;2—, — %) with DeCl,
To show this, note that the approximation » of # may be constructed
in the following way: we approximate @ by

pl@) = Y ®@@)d(@—a'),

the last sum being extended over grid points, and then put b = (pay —@1).
The coefficients f, corresponding to this b will be equal, as is easily seen,
+1
to +¢; = +h (¢ —¢) and thus
0D

g S
max|f,| ’ =

ad
ox?

41

H
for sufficiently small .

7. By applying a standard device we obtain an estimate for [[oe]] .
To this purpose we multiply equations (22) by corresponding &; and
then sum up the results over 7. In this way we get

v(tty, V) +A(v, u, u) = (f, v),
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where v = u—bej(w). This may be rewritten, if we replace u by v+ b
and then use (11) and (12), in the form

”“vw”f_A(b7 v, 'U) = (f; fv)—v(?)a:) bw)—l“A(b: b7 'v)"

From the last identity, applying (20) and Cauchy’s inequality, we
get the estimate of the form

(26) [Ue]| < O(v—a)™
with a constant (' depending only on the norms ||f|[, ||b.]|, the dependence
being so that ¢ tends to zero when these norms do.

THeEoREM 2. The solution wu,p provided by Theorem 1 48 unique
if only ‘
(27) l[uz]| < »(eoe1)™",

where ¢, and ¢, are the constants appearing in inequalities (8) and (9).
Due to the remark preceding Theorem 2 formula (27) will hold if,
for example, ||f|| and |b.| are sufficiently small,

Proof. Let both pairs u,p and u’', p" satisfy equations (16)-(19).
Then w = u—u', ¢ = p—p’ satisfy the equation

(28) Z {—vw; - —%?tﬁi(ui—k uz)+ 3w (w; 4 w;i)} = —gradgq,

as well as divw = 0 and w|; = 0. Multiplying (28) scalarly by w, we
get the identity
va:c||2+A(wr w,u) =0

which leads, due to (15), to the inequality
v [[we|* < €6y [|0g]|® [zl

The last inequality and (27) imply |w,| == 0 and hence u = '
which, in turn, implies p = p’ due to (19).

, 8. A vector % will be called a weak solution of problem (1) if #—%
eJ (), |V| is finite and if the identity

. 0U
(29) fl702/-l70d:1;+ IZ%"“ — Odw = fﬁ"@dw
Q2 02 1 a‘m 0

is satisfied for any 0eN, N denoting the class of regular divergence free
vectors defined in £ and vanishing near S.
From now on we assume that « in (20) does not depend on h.
Let {h} be any sequence of positive numbers decreasing to zero.
Let {u;} denote the corresponding set of solutions of system (16)-(19).
IFinally, let U/;, denote the approximation of u; defined in section 2 of [2].
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THEOREM 3. One can extract from {U,} a subsequence {U} which
converges to a weak solution % of the problem (1).

Proof. Take 6eN and form its solenoidal approximation & provided
by formulas (6) (or (4) of [2]). Due to the regularity of 0, ¢ converges
uniformly to 6 when h — 0. Now a standard device is to be applied.
The norms |ju,| are, due to (26), uniformly bounded and this allows us
to extract a subsequence {u;} such that the extensions U, converge
strongly to some %, (Uy), weakly to V% under the L,(Q)-norm. Hence,
multiplying equation (16) scalarly by ¢ and letting h tend to zero we

get (29). The equation V-% = 0 and the condition 0?/—9363(!2) are ob-
viously satisfied.

Remark. If condition (27) is satisfied, then the whole sequence
{un} converges to %.

9. The problem we intend to discuss now is that of approximate
solving of system (16)-(19). This will be done in two different ways:
either by an iterative process of solving of sets of linear equations or
by utilizing the asymptotic behaviour at ¢ ->oc of finite-difference
approximations to the non-stationary solutions of the Navier-Stokes
equations, both applicable in 2- and 3-dimensional spaces as well. Either
of these procedures is limited to the solutions # subject to the unicity
condition (27). Moreover, in the second of those approximating proce-
dures the condition ki~2 < const is to be imposed on the mesh sizes k
and A of the grid of t, x# space.

THEOREM 4. Under condition (27) of Theorem 2 the solution w of
the system (16)-(19) is equal, for any fized h, to ]iqr)gw(m) of the sequence v,

m=0,1,..., of uniquely determined solutions of the following linear
system of equations:

D2 A=) (o o)) = — gradp™ 1 f,
i

(30)
dive™ =0, o™, =dl,, Mp™ =o.

o is an arbitrary element of jo(w). Equations (30) are taken in the
points of the same sets of w as il was in the case of the system (16)-(19).
Proof. Multiplying scalarly the first of equations (30) by »™ we
get
y[lEV]2 = (F, o™),
hence v™ = 0 if only f = b = 0. The number of equations (30) is equal

to the number of unknowns «™, p™ and therefore equations (30) are
uniquely solvable for any m.
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Subtract, side by side, equations of the first group of (30) from
equations (16) and write u— o™ = w, u—o™ M =w, ¢ = p—p™. The
result has the form

2’ {— v+ 3% (w4 uz) + 5 (0"~ M (w4 wy)} = —gradg.

2

Multiplying the last equation scalarly by w, we get
v |[we |+ A(w, w, u) = 0.
The result of applying the estimate (14) to A above is

(2 —egeq ||uel]) llwel? < ?001 [ || |20 ]2
which gives us

g || < 5™ o8 — 1]

with 9 = ¢ge, [Ju,| (2v —¢qeq |Jug])~'. Now condition (27) leads to 0 < <1
and hence to

limo™ = u.
m
Remark. If we reject condition (27), the following may be proved:
from the sequence »™ of solutions of system (30) a subsequence may
be chosen which tends to a solution of system (16)-(19).

10. To describe the second approximation mentioned above we
could use any of schemes presented in [3]. We can also use the other
schemes, for example the following one:

vt N (i35 ok o)} = —gradp -+,

v

(31) | . |
dive =0, Z]):(), plg == 04

where the same notation has been used as in [2]. The proposed scheme
differs slightly only from one of the schemes given in [3]. b is assumed
to be zero, f is independent of the time variable. Equations (31) are to
be taken in the same points of the set w as before when considering equa-
tions (16)-(19). t-variable assumes the values ¢ = nk < T, k is a positive
constant.

The proposed scheme provides, for any initial condition, convergent
approximations in any time-interval (0, 7) due to the fact that all the
procedure of [3] may be applied to the present case. This is a consequence
of the possibility of establishing the basic a priori estimate (see formula
(9) of [3] or cf. a similar situation in [2]).
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ToeorREM 5. Let v be, for fized h and k and t =nk<T = Nk,
a solution of the system (31) subject to the initial condition ©|,_, = a with

@ resulting by approvimation (defined as in [2] or [3]) of any eJ(Q).
If condition (27) is satisfied and the fived h, k are such that

(32) kh2 < K,

where K is a constant given below in formula (36), then the solution v of
(31) converges to the solution w of (16)-(19), when T > oo, in the sense that
v = U in each point of w.

Proof. Subtract, side by side, equations (16) from the first group
of equations (31) taken at ¢ = nk. If we put w = v—u and note that
#; = w;, we may write the result in the following form:

w; -+ Z {— vz —[—%z‘vi(wiJrwg)+%‘wi(ui+ug)} = —gradp’,

where p’ denotes the difference of p’s appearing in (31) and (16). Multi-
plying scalarly the last equation by 2w, both taken at the same { — nk,
and then making use of the identity

282 Y (w—w)w = [hwl2— @2+ wo— B2,
of (12) and of estimate (14), we get the inequality
(33) [l — 1[m]12+- llow — @2+ 20k [z |2 < kegey [Jug]| ([l ]2+ [1@,]2),

valid for any ¢ = nk < 7.
Making use of the triangle inequality and of the crude estimate

|[ws — || < 27 |lw — ),
we may write

[ |[* < (14 2) llows |2+ 8 (L4271 ™2 (o — w52,
where 1 is any positive constant. Applying this to (33) we get
(34)  llwlf*— @12+ {1 — 8 (1 + 271) ey 0, kb2 |, ||} o0 — w12+
{2 (2 2) 600y ][} r0g]12 < 0.

Put v—eyeflugl| = . Due to (27), & is positive. Tt we now put
A = e(v—e)! into (34), we get
(35) w2 — |[]]2 4 ke [Jw, ]2 < 0,
if only

(36) k2 < K = (v— ey, [, ) (8ve e, gl
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Applying inequality (8) to (35) we infer that

w2 < (14 kecg)™ |[w]2,
whence
(V)| < (1+ k)™ lu—al|

which, due to the definition of w, implies v — u with N —» oo, i.e., with
T -~ oo, k being fixed. For large Nk = T the coefficient in the last ine-
quality is approximately equal to exp (— 4 Tec).
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