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PSEUDO-SYMMETRIC DIFFERENTIATION
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Let f be a real-valued function defined on the real line R. If ¢ and ¥ are
positive, continuous, strictly increasing functions defined on an interval (0, 9)
such that the right-hand limits ¢ (0+) = ¢(0(+) = (0, then we consider the
quotient
fx+oh)—f(x—y (h)

o(h) ’

where o (h) = @(h)+y (h) for he(0, /), and we define the upper, lower @y-
pseudo-symmetric derivates, the gy -pseudo-symmetric derivative of f at x in
the usual manner, namely

q(x, h) =

Jou () = lim q(x, h),  foy(x) = lim q(x, ),

h—-0+

and, when the limit exists,
Jou (x) = lim q(x, h).
h—0+

This derivative is more general than that considered in [6]. In the present
paper it is proved that if f,,(x) exists at every x €R, then f;, is of Baire
class 1. Also, with some further restriction on ¢ and ¥, a certain monotone
theorem is proved and, finally, it is shown that f,, has the Denjoy property
if it has the Darboux property.

1. In this section, f, ¢, V¥, etc. are as stated above.

THeoreM 1. If f,(x) exists for every x €R, then f,, is of Baire class 1.

Proof. Let a <d and let a perfect set P — R be given. According to
Preiss ([4], Theorem 1), it suffices to show that

A= \xeP: f,,(x)<a} and D= !|x€eP: f,,(x)=>d)

cannot both be dense in P. We assume that both A and D are dense in P
and want to arrive at a contradiction.
Let b, ¢ be real numbers such that a <b <c¢ <d and let

B={xeP: f,(x)>b], C=xeP:f,,(x)<c].
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Then P=BuUC and at least one of B, C is of the second category in P.
However, we shall show that B cannot be of the second category in P and a
similar argument (D and C are used instead of A and B, respectively) shows
that C cannot be of the second category in P. Thus the theorem will be
proved.

Suppose that B is of the second category in P. With no loss of
generality, we assume that b = 0 (we can consider f(x)—bx if b # 0). Let n,
be the first positive integer such that ng! < 8. For n > n,, we set

(1) B,= !xeP: f(x+¢@(h)> f(x—y(h) for he(, 1/n)}.

Then B, is an expanding sequence of sets with

There must be some n, > n,y such that B, is not nowhere dense in P. That

is, there exists a closed interval I whose interior I° contains points of P, and
I~ P is contained in B, , the closure of B, . We can assume that I N P is

perfect. (Otherwise, consider a suitable subinterval of I.)

Since the function ¢ is clearly continuous and strictly increasing on
(0, ) with a limit 0 at 0 and 1/n, < &, there exists r €(0, §) such that o (r)
=30(1/n,). For each x €A, since f,,(x) <a <b =0, there exists J,€(0, r)
such that

@ f(x+ @) =f (x=w (h) < o(h3 <0

for every he(0, 9,).
Now I°NP # @ and A being dense in P, there exists

Xo€ANI°NP,

Since I N P is perfect, x, is either a right or a left limit point of I " P. The
two cases are analogous, and hence we give only the proof for the case in
which x, is a right limit point of I N P.

We fix a point

y €A N(xo, Xo+min {¢(8,.), ¥ (d:))) NI P.
Clearly, .
0 < y—xo < min 19(3.), ¥ (6xp)! < ¥ (5sy)
and ¥~ 1(y—x,) is defined. Let
H = (0, min \8,, ¢ "' (y—xo)}).
Then, for héH, 0 <y (h) < y—xq, and hence
0 <y—xo—Y(h) <y—xo <min @ (dyy), ¥ (0:))! < @(Jxy).
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We can define a map ¢t on H by setting, for heH,

3 th =0 '(y—Xo—¥ (h).
For heH, the above inequalities show that

“4) 0 <ty <Oy,
Also,

6) y+toW—xo+y ) =y+oh)—xo+0(tw— ot
=y+o)—xo+ot)—(y—xo—y (h) = 0ot +a(h).
By (4), the definition of H, and the choice of §, for x €A, both t, andeh are in

the interval (0, r), and hence both a(t,) and - (h) are positive and less than
o(r) =340(1/n,). Thus (5) implies

0 <y+oh)—xo+¥(ty) <a(l/n).
Now we can define another map A on H by setting, for heH,

(6) =0 (y+o(W)—xo+V¥ (1)
and assert that '
7 0<4,<1/n; for heH.

Further we define a map z on H by
8) z,=y+o(h)—op(4,) for heH.

It should be noted that these maps are continuous on the interval H. We
assert that z(H) is an interval with x, as its left-hand endpoint. This is shown
by (9) and (11) below.

For heH, by (6), (5), and the fact that ¢(0+) = 0, we have

lim o(4,) = lim o(t,).
h—0+ h-0+

1 1

Since 67" and ¢~
and (3) that

are- clearly continuous, we see from the above equality

lim 4, = lim t, = @~ 1 (y—xo).
h—-0+ h—0+

Thus lim ¢(4,) = y—x, and, by (8),

h—-0+

lim z, = x,.
h—0+

That is,
) X €z (H).
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Also,
zZ=y+oN—0(@) =y+o)—0c(d)+¥ (4.

This together with (6) yields
(10) 2y =xo— Y (t)+¥ (4.
By (6) and (5), o(4,) = a(ty)+0o(h) > a(t,), and hence 4, > t,. It follows that
¥ (4) > ¥ (t) and, from (10),
(11) 2z, > Xo.

Since x, is a right limit point of InP and B, >INP, the set
z(H)nI NP is not empty and contains points of B, . Let

¢€B, Nnz(H)nINP.
Then there exists heH such that

(12) E=zy=y+o() -0 (.
For this ¢ and h, we have &£+ ¢(4,) = y+ ¢(h). Also, by (12), (10), and (3),

=Y (A =xo—VY (@) and xo+o(t) =y—y(h).
Thus we have
(13)  f(xo+ @)= (xo—¥ (tw)

= ~[fy+om)—f(y—vH)]+[f ¢+ @) —f (E—¥ )]
Since x, €4, (2) and (4) imply that the left-hand side of (13) is less than zero.
But yeA and { €B, ; we see from the fact that heH, (2), (7), and (1) that the
right-hand side of (13) is greater than zero. This is a contradiction.

2. In this section we assume that f is a measurable function and that ¢

and y satisfy a further condition:
There exist positive numbers n and M such that, for each he(0, J),

n<e.(M<@*(MW<M and n<y.(<Y (<M,

where ¢, (h) and @* (h) denote the lower and upper right derivates of ¢ at h,
respectively.
THEOREM 2. A fnite derivative f'(x) exists almost everywhere on the set

(x: fou (X) < 400} U ix: fry(x) > —0).

This theorem is proved in [5].

THEOREM 3. If foy(x) > —c0 on R and Jou(x) 2 0 almost everywhere on
R, then the restriction f|C of f on C is non-decreasing, where C is the set of

points of continuity of f.
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To prove this theorem, we need the following

LemMMA. If fou(x) =0 on R, then the restriction f|C is non-decreasing.

Proof. We assume that f,,(x) > G for every xeR. The general case
follows by considering f(x)+&x for each ¢ > 0.

Suppose that there exist a, b in C with a <b and f(a) > f(b). By
Theorem 2, C is dense. Let

Xq €(a, b)nC
and let a €(f(b), f(a)— !f(xo)} be fixed. Then at least one of the sets
E,= \x€[a,b]: f(x) >a] and E*= |x€[a,b]: f(x)<a)

contains a subinterval of (a, b). We assume that there exists (c, d) = (a, b)
such that (c, d) = E°. (The case where (c, d) < E, can be proved analogously.)
Let

co = inf |x €[a, b]: (x, d)—E* is countable!.

Clearly, a<co<c and (co, d—E* is countable. If ¢, > a, then, since
Jow(co) > 0, there exists 6’ €(0, ) such that

@(0) <d—co, Y(9) <co—a,
and
flco—¥ (W) < f(co+@(h) for he(0, §).
It follows from the above inequalities that c,—y (d)€(a, c,), and
(co—¥(8), co)—E* is countable. Hence (co—y (8'), d)— E* is countable. This
is a contradiction to the definition of ¢,. Thus we must have c, = a. Since
a€C, f is continuous at c, and
f(e)= lim f(x)<a.

x—cqg+
xeE%

On the other hand, f(co) = f(a) > a. We arrive at a contradiction. The
Lemma is proved.

Proof of Theorem 3. Let E = |x: f,,(x) <0}. Then |E|, the Lebes-
gue measure of E, is zero. By a theorem on p. 214 in [3], there exists a non-
decreasing continuous function g such that g'(x) = + oo for every x €E. Let
e¢>0and F(x) = f(x)+eg(x) for xeR. Then F,,(x) = 0 on R. Since the set
of points of continuity of F is the same as that of f, namely C, by the
Lemma, F|C is non-decreasing. This holds for every ¢ > 0. Thus Theorem 3
is proved.

CoroLLARY. Let f,,(x) exist and f,,(x) # — oo on R. If f,,(x) = 0 almost
everywhere on R, then f,,(x) >0 on R.

Proof. Suppose that there exists xo,€R such that f,,(xo) <0. Then
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there exists &' €(0, 6) such that
(14) f(xo+@(h) < f(xo—¥(h) for he(0, §).

Since C is a G;-set and, by Theorem 2, C is dense, C is residual in R. Noting
that ¢ and ¢ are actually homeomorphisms, we see that the sets

the(0, &): xo—Y (W) eC!, 'he(0, 8): xo+@(h)eC]

are both residual in (0, ). There exists hy €(0, é') such that x,—y (hy) and
Xxo+ @(ho) are points in C. By Theorem 3,

S (x0—=¥ (ho)) < f (xo+ @ (ho)).

This contradicts (14). The proof is completed.

Remark 1. The above Corollary remains valid if R is replaced by any
open interval. It clearly follows that, for f with finite f,,(x) on I, if f;,(x)
2 M (or f,,(x) < m) almost everywhere on I, then the same inequality holds
everywhere on I, where I is an open interval.

THEOREM 4. Let f have a finite foy(x) on R. If f,, has the Darboux
property, then for given intervals (a, b) and (x, B) the set

\Xx €(a, b): foy(x)€la, B)

is either empty or of positive Lebesgue measure.

This theorem can be proved in a standard way by using Remark 1 and
Theorem 1.

Remark 2. Applying Theorem 4 and Darboux property of f,,, we can
easily show that, in the statement of Theorem 4, (a, b) can be replaced by
[a, b].

Remark 3. The additional condition imposed on ¢ and Y at the
beginning of Section 2 is directly used only for the proof of Theorem 2. For
the rest of the results in this section, this condition is required simply because
Theorem 2 is applied. Therefore, this condition can be replaced by any other
condition under which Theorem 2 holds.

Remark 4. Theorem 1 is a direct generalization of a theorem in [1].
Also, in his paper [2], Larson introduced generalized approximate paramet-
ric derivatives which include the ¢y-pseudo-symmetric derivative if a further
restriction on ¢, ¥ as mentioned at the beginning of Section 2 is imposed.
There he proved that Theorem 1 above holds for his generalized derivatives
if f is measurable.

The authors wish to thank the referee for his suggestions.
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