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1. Introduction. The Hilbert transform has had a substantial influence
on many developments in analysis; the aim of this paper is to bring together
two areas in which it has played a réle, one from harmonic analysis and the
other from Banach space operator theory. The harmonic analysis in question
is the A, condition of B. Muckenhoupt (or more precisely the discrete version
of this condition). This was introduced originally in [8] to give a condition
on a weight function under which the Hardy-Littlewood maximal operator
satisfies a weighted norm inequality and was developed further in [7], where
the corresponding inequality for the Hilbert transform is studied. On the
other hand, the relevant operator theory is concerned with the possibility of
representing an operator V on a Banach space X as

27
V= [ e*dE),
o

the function E(-) being projection-valued (with various additional proper-
ties to be specified later) and the integral existing in the strong operator
topology. Such operators are called trigonometrically well-bounded and were
introduced in [1]. The main result presented here is that the bilateral shift on
a discrete weighted I? space (1 < p < o) is trigonometrically well-bounded
if and only if the A, condition holds for the corresponding sequence of
weights (Theorem (4.2)). As an application, we show that trigonometrical
well-boundedness for an invertible operator V on a Hilbert space cannot be
characterized by the growth rate of |V"|| as |n| — 0o0. This contrasts with
the result that, on a Hilbert space, an invertible operator V is of scalar type
with spectrum contained in the unit circle if and only if |V*|| = O(1) as
In| - oo.

As usual, R, C, Z and N denote the real numbers, the complex numbers,
the integers and the positive integers respectively, and T is the circle group.
Given a Banach space X, B(X) denotes the algebra of all bounded linear
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operators on X and [ is the identity operator on X. We denote by BV(0, 27]
the Banach algebra of complex-valued functions of bounded variation on
[0,27], with norm

| flljo,27 = |f(2m)] + var f,

where var f is the total variation of f on [0,2x], and AC[0,2x] is the sub-
algebra of absolutely continuous functions on [0,27]. Further, BV(T) is
the Banach algebra of functions f on T such that the associated function
f(t) = f(e'*) belongs to BV|0, 2x], with || f]ly = ||f~||[o'2,,]. The kth Fourier
coefficient of an integrable function f on [0,27] or T is denoted by f(k).

By a weight sequence (or just a weight), we shall mean a sequence w =
{wi}rez of strictly positive real numbers. For 1 < p < 0o and a weight w,
IP(w) denotes the usual weighted [? space of complex sequences z = {zx}rez

such that
1/p
|z llw,p = {Z |$k|"wk} < oo.
ke

Given any complex sequence z = {zi}rez, let Uz denote the sequence
Uz = {zk-1}rez, so that U denotes the bilateral right shift on any sequence
space on which it is defined. It is easy to verify that U is a bounded linear
mapping of I[P(w) into itself if and only if

(1.1) sup{wg41/wk : k € Z} < oo.

As a consequence, U is an invertible element of B(I?(w)) if and only if
(1.2) sup{wit1/wk:k €Z} < oo and sup{wi/wi41:k € Z} < oo.
Furthermore, when (1.2) holds, U~! is the left shift on /P(w) and the norm
of U™ is given by

(1.3) IU™|| = sup{(wksn/w)/?: k € T}

for n € Z. The space of bilateral complex sequences having only finitely
many non-zero terms is denoted by lo.

2. The A, condition. Throughout this section, let w = {wi}rez be
a sequence of positive weights. For p in the range 1 < p < 00, w is said to
satisfy the A, condition if there exists a constant C}, such that

(2.1) (Zwe) (Zwi )™ < cplrp

kel kel

for every finite interval I in Z, where |I| denotes the cardinality of I. The
continuous variable version of this condition was originally introduced by
B. Muckenhoupt [8] and has featured extensively in recent years in the study
of weighted norm inequalities for the classical operators of Fourier analysis
(see [6] for further details). It is the connection between the A, condition
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and the Hilbert transform, as discussed in both the continuous and discrete
cases in [7], which will concern us here.
Given a sequence z € lp, let Hz be the sequence defined by

(2.2) (Hz)k = Z':Dk-m/m for ke Z,
mel
the prime superscript denoting the omission of the term m = 0 in the
summation. Thus Hz = h % z, where h is the discrete Hilbert kernel given
by
h(k) = k™ (k#0), h(0)=0.
For n € N, let h,, denote the nth truncate of h,
hn(k) = h(k) (lk] <n), ha(k)=0 (|k|> n),

and let H*# be the maximal function for the sequence of convolution oper-
ators £ — h, * z, that is,

(H*z), = sup{l Y '2hm/m|:ne N}

m=-—n

for k € Z. The definition of H#z makes sense for an arbitrary complex
sequence £ = {Zi}krez. The main result which will be needed in analyzing
the spectral structure of weighted shift operators can now be stated.

(2.3) THEOREM ([7, Theorem 10]). Let 1 < p < co. Then the following
statements are equivalent for the weight sequence w.

(i) w satisfies the A, condition. |
(ii) There is a constant K, such that ||Hz||w,p < Kp||Z||w,p for all se-
quences z € ly.
(ili) There is a constant K, such that ||H#z||yp, < Kpl||Z|lwp for all
complez sequences .

Remarks. Suppose that (2.3)(ii) holds. It is then easy to see that, for
every k € Z and every z € IP(w), the series in (2.2) converges absolutely, and
that (2.2) defines H as a bounded linear mapping of IP(w) into itself. This
is the way in which the above condition (2.3)(ii) is stated in [7]. Further,
(2.3)(iii) is formulated in [7] in terms of the maximal operator associated
with the tails h—h,, of the discrete Hilbert kernel; the equivalent formulation
given here is more convenient for our purposes.

It will be useful to have several simple techniques by which to check the
validity of the A, condition. In order to state these succinctly, we introduce
the following terminology. Given an interval J of successive integers (e.g. N
or —N), say that w satisfies the A, condition on J if there is a constant C,,
such that (2.1) holds for all finite subintervals I of J.
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(2.4) PROPOSITION. Let 1 < p < oo and let w be a weight sequence on Z.

(i) w satisfies the A, condition on Z if and only if w satisfies the A,
condition on N and on —N, and there is a constant Cp such that (2.1) holds
for every interval I of the form I = {k € Z : |k| < n}, where n € N.

(ii) If wx = w_j for k € N, then w satisfies the A, condition on Z if
and only if it satisfies it on N.

(iii) If w is bounded on —N and wy, — oo as k — oo, then w does not
satisfy the A, condition on Z.

(iv) Let f be a monotonic, strictly positive function defined on [1,00)
and let wi = f(k) for k € N. Then w satisfies the A, condition on N if and
only if there is a constant C, such that

05 ([ @) (f @I dz)" < Cylt - 57

forall s,t e R with1 <s<t< oo.

Proof. Throughout, the symbol C, will be used to denote a constant,
the value of which may vary from context to context, but which will only
depend on p and w.

(i) Let w satisfy the A, condition on N and —N, and suppose that (2.1)
holds for every symmetric interval I in Z as described in the statement of
(2.4)(i). Let n and ! be non-negative integers and let m = max{n,!}. Then

(Z‘: w) (ZI: we/ “"'”)'D—1 <( i we) ( zm: w;u(p-n)”“

k=-n k=—n k=-m k=-m
< Cp(2m +1)? < 2PCp(n + 1+ 1)P.

It follows that w satisfies the A, condition on Z.

(ii) Suppose that wy = w_g for k € N, and that w satisfies the A, con-
dition on N. Then w also satisfies the A, condition on —N and thus, by (i),
we need only establish (2.1) for intervals of the form I, = {k € Z : |k| < n},
where n € N. Fix such an interval. The A, condition on N implies that

n n p—1

(2.6) Z wi-< CpnPuwy and (Z w;l/(p-l)) < CpnPuyl.
k=1 k=1

The symmetry of w about 0 gives

e (50 (5w

=-n k=-n

= (wo +2 i wk) (wo-ll(p-l) +92 z": w;l/(p-l))”“.
k=1 k=1
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Since (a + b)P~! < 2P~1(aP~! 4 bP1) for a,b > 0, we can apply (2.6) and
the A, condition on N to (2.7) to obtain (2.1) for I = I,, as required.

(iii) Suppose that wy < M for kK € —N and that wy — o0 as k£ — 0.
For n € N,

n n

(2.8) n'l( Z: wk) >n~1 (Z wk) — 00,

k=-n k=1

(29) ni( Z": w0 ) > a7t (32 wpeY) > y1/eD 5 0.
k=-n

=-n

It follows from (2.8) and (2.9) that
(2n + 1)-p( z": ‘ll)k) ( z": w;ll(p_l))p-l — 00 as n — 0o.

=-n =-n
Hence w does not satisfy the A, condition on Z.
(iv) Suppose firstly that f is increasing and that (2.5) holds. Let n,l € N
with 2 < n <l < 0. Then
I+1 ]

l l
Ywe< [ f@)dz, Y wVPV < [ [f(z) D da.
k=n n k=n n

-1

It follows easily from these inequalities and (2.5) that w satisfies the A, con-
dition on N\ {1}. Hence w satisfies the A, condition on N (cf. the argument
in the proof of (ii) involving (2.6) and (2.7)).

Conversely, suppose that w satisfies the A, condition on N. Similar
arguments to those above show that (2.5) is valid for s,t € N with s < t. It
can then be shown that (2.5) will be valid providedt —s> 1. If t — s < 1,
then the left-hand side of (2.5) is dominated by (t — s)Pwy4ow;?, where
k € N satisfies k < s <t < k + 2. Since wxpowi! < 3PCp, it is now seen
that (2.5) holds for all s,¢ with 1 < s <t < oo.

Finally, the case when f is decreasing can be proved similarly, or else
can be deduced from the increasing case by considering f~1/(P=1) and p',
where p’ is the index conjugate to p.

Remark. In fact, we shall only use the sufficiency of (2.5) for w to
satisfy the A, condition, but have included the necessity for completeness.

3. Trigonometrically well-bounded operators. Given a Banach
space X, a spectral family in X is a projection-valued function E(-) : R —
B(X) such that

(i) sup{||E(A)|| : A € R} < oo;
(ii) E(AN)E(p) = E(p)E(A) = E(X) for —00 < A < p < 00
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(iii) E(-) is right continuous in the strong operator topology;
(iv) E(A7) = lim,_,y- E(pu) exists for every A € R;
(v) E(A\)> I as A = 00 and E(A\) —> 0 as A — —oo,

the limits in (iv) and (v) being with respect to the strong operator topology.
A spectral family E(-) is said to be concentrated on [a,b] if E()) = 0 for
A<aand E(A)=1I for A > b.

Given a spectral family E(-) concentrated on [0,27] and f € AC[0, 2],
the integral f[o,z . F(A) dE() exists in the strong operator topology as a Rie-

mann-Stieltjes integral, and the mapping @ : AC[0,27] — B(X) defined by
(3.1) ®(f) = FOEO+ [ f(2)dEQ)

{0,27]

is a continuous identity-preserving algebra homomorphism. The right-hand
side of (3.1) is denoted by f[g}'h] f(A)dE(X). An operator V in B(X) is
said to be trigonometrically well-bounded if there is a spectral family E(.)
concentrated on [0,27] such that

(3.2) V= [®edE().
[0,27]

The spectral family E(-) can be normalized so that E(27~) = I and this nor-
malization determines E(-) uniquely (for a given V'). We then call E(-) the
spectral decomposition of V. If V is a trigonometrically well-bounded oper-
ator with spectral decomposition E(-), the operator argV = f[g”%] AdE(X)
is called the argument of V. It is a well-bounded operator of type (B)
[5, Definition 16.8, p. 315] and satisfies e'*¢V = V. The existence of its ar-
gument shows, in particular, that a trigonometrically well-bounded operator
is necessarily invertible. The classes of well-bounded and trigonometrically
well-bounded operators provide effective generalizations to Banach spaces
of, respectively, selfadjoint and unitary operators on Hilbert spaces. For a
more complete account of their theory and further references, see [1] and [5].

The trigonometrical well-boundedness of an invertible operator V on a
Banach space can be characterized in terms of the mapping ¢ — ¢(V') defined
for trigonometric polynomials g, where ¢(V) = 3" a, V¥ if g(e't) = T axet*:.
This gives a rationale for the terminology (see [1, Corollary (2.17)]). In
general, the characterization involves a compactness property with respect
to the weak operator topology, but takes on the following simpler form when
the underlying space is reflexive (see also [3, Corollary (2.3)}).

(3.3) THEOREM. Let V be an invertible operator on a reflexive Banach
space. Then V is trigonometrically well-bounded if and only if there is a
constant K such that ||g(V)|| < K]||g|{x for all trigonometric polynomials q.
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We shall also need a characterization of trigonometrical well-bounded-
ness (again for operators on reflexive spaces) which indicates a connection
with the discrete Hilbert transform. To state this precisely, let

n
sa(V,t) = Z'k—leiktvk
k=-n
for an invertible operator V, t € [0,27] and n € N. Notice that s,(V,t) can
be viewed as the operator obtained by transferring in the sense of Coifman

and Weiss [4] the kernel on Z associated with the nth truncate of the discrete
Hilbert transform by the representation k — e~ ***V—*% of Z in X.

(3.4) THEOREM ([2, Corollary (2.10)]). Let V be an invertible operator
on a reflezive Banach space. If

sup{||sn(V,t)||: » € N and t € [0,27]} < oo,

then V is trigonometrically well-bounded.

4. Weighted shifts. We are now in a position to discuss the main
result of this note, namely to give necessary and sufficient conditions under
which a bilateral weighted shift on a reflexive P space is trigonometrically
well-bounded. Before stating the result in detail, some remarks concerning
the term “weighted shift” are in order, since it is used in two distinct, albeit
similar, ways.

For 1 < p < o0, let I? denote the standard two-sided unweighted sequence

space of all p-summable complex sequences. A weighted shift on [P is an
operator S, of the form

(4.1) Sa({zx}) = {akzik-1},

where a = {ax}krez is a sequence of scalars. The condition that (4.1) does
indeed define a bounded linear mapping of I? into itself is that the sequence a
is bounded, and S, is an invertible element of B(IP) if and only if « is both
bounded and bounded away from 0. Further, S, is isometrically similar
to Sz, where Bx = |ak| for k € Z, and so in many situations only weighted
shifts with non-negative weights need be considered.

When the weight sequence a has no term equal to zero, an alternative
way to analyze S, is to note that it is isometrically similar to the unweighted
shift U defined on an appropriate weighted sequence space I?(w). More pre-
cisely, let & = {ai}rez be a bounded sequence of non-zero scalars, define
for k € Z by

(1...ax)”! if k>0,
Te=141 if k=0,
(ak+1 .. .ao) if k<0,
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and let wy = |7x|~P. Then the mapping T defined by T{zx} = {yizs} is
an isometric isomorphism of I? onto IP(w) satisfying UT = T'S,. In the
converse direction, it is easy to show that the unweighted bilateral shift on
a space IP(w) is isometrically similar to an appropriate weighted shift S, on
IP. In the context of the present paper, it is more convenient to consider a
weighted shift as the operator U on IP(w) for some weight w.

Following these preliminary remarks, we now state the main result of the
paper, giving necessary and sufficient conditions for the bilateral shift U on
a reflexive IP(w) space to be trigonometrically well-bounded.

(4.2) THEOREM. Let 1 < p < oo, let w = {wi}rez be a sequence of
positive weights, and let U denote the bilateral shift U{zx} = {zr-1} on
IP(w). Then the following statements are equivalent.

(i) w satisfies the A, condition.
(ii) U is trigonometrically well-bounded.
(iii) U is bounded and invertible, and

sup{||sn(U,0)|| : » € N} < 0.

(iv) U is bounded and invertible, and s,(U,0) converges in the strong
operator topology as n — oo.

Proof. (i) = (iii). Suppose that w satisfies the A, condition. Taking
I={k,k+ 1} in (2.1), it is seen that

Wi /Wit < (Wi + wipr)(wp Y 4w PV < 970,

for all k € Z. Similarly, w41 /wi < 2PC), for all k € Z. Therefore, by (1.2),
U is bounded and invertible. Since s,(U,0)z = h, * z for z in IP(w),
condition (iii) in Theorem (2.3) gives the existence of a constant K, such
that ||s,(U,0)|| £ K, for all n € N. This establishes (iii).

(iii) = (ii) and (iv). Suppose that

M = sup{||sn(U,0)|| : » € N} < o0.

For t € [0,27], the mapping W; : IP(w) — IP(w) defined by Wi{z,} =
{e'**z\} is an invertible isometry and e*U = W,UW; 1. It follows that

M = sup{||sp(U,t)|| : n € N} < 00

for t € [0,27] and therefore, by Theorem (3.4), U is trigonometrically well-
bounded. Now [2, Corollary (3.9)] gives (iv).
(iv) = (iii). This is clear from the principle of uniform boundedness.
(ii) = (i). Suppose that U is trigonometrically well-bounded, let E(-)
be the spectral decomposition of U, and let & be the associated continuous
homomorphism of AC[0,27] into B({?(w)) as in (3.1). Define 4 : [0,27] — C
by setting ¥(t) = i(r —t) for 0 < t < 2w, ¥(0) = ¥(2r) = 0, and let
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{fm}men be a sequence of trigonometric polynomials such that
(a) fm — ¥ pointwise on [0, 27];
(b) K = Sup{llfm”[0,21r] tm e N} < 00.

Let z = {z,} and y = {yx} be elements of [y, with z, = y, = 0 for |k| >
M, and temporarily fix m € N. Use (-,-) to denote the standard pairing of
IP(w) and its dual space I? (w), and let f,,(k) = 0 for |k| > N > 2M. Then

N ) N M X
(4.4) (X fn®)Wr2y) = 3 3 fmld) zismmn.
k=-N

k=—-Nl=-M

(4.3)

It follows from (4.4) that

M M
(4.5) Z Z fm(B) zi_kyiwr = (B(fm)z, y)

k==2M I=—M
and hence, by (4.3)(b), that

2M M
46) | XX fa®)zosyw| < K8l Ielwpllylloy-

k==2M I=-M

By (4.3) and dominated convergence, f,, converges pointwise on Z to 3, the
discrete Hilbert kernel h. Letting m — oo in (4.6), we now see that

(4.7) [(Hz,y)| < K||B]| l|lw,p |¥]lw,p-

Since (4.7) is valid for all y € ly, it follows that |[[Hz||wp < K||P|| ||]|w,p-
This final inequality holds for all z € lp and thus, by Theorem (2.3), w sat-
isfies the A, condition as required. This completes the proof of the theorem.

SCHOLIUM. Letl < p < oo and let w = {wy }rez be a sequence of positive
weights satisfying the A, condition. Then Y p2 _  wj = 00

Proof. If ;2 __ wi < 00, then the sequence a = {ai}kez belongs to
[P(w), where a; = 1 for all k£ € Z. By Theorem (2.3)(ii) (and the remarks
following Theorem (2.3)) applied to a, we obtain the absurd conclusion that

oo M| < 00.

(4.8) COROLLARY. Suppose that the conditions (i)-(iv) in Theorem (4.2)

hold. Then the limit in the strong operator topology of s,(U, 0) is the discrete

Hilbert transform H on IP(w), and
arglU =7l +:H.

Proof. Since s,(U,0)z = h, * z for z € IP(w), the first conclusion is
immediate from Theorem (2.3) and Theorem (4.2)(iv).
We now use the notation employed in the proof of the implication (4.2)(ii)

= (4.2)(i). Put A = argU = f[o 2] AAE(A). If z € IP(w) and E(0)z = z,
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then clearly Az = 0, and consequently Uz = e'4z = z. It follows that z
is a constant sequence and so, by the preceding Scholium, z = 0. We have
shown that E(0) = 0, whence it is readily inferred, with the aid of (4.3)(a),

(b) and [5, Theorem 17.5, p. 337], that
lim &(f) = il - iA,

the limit here being in the strong operator topology. Letting m — oo in (4.5)
identifies this strong limit as H, and completes the proof.

The above proof that (i) implies (ii) is not direct, but relies on the
results of [2] and the maximal inequality of Theorem (2.3)(iii) associated
with the A, condition. A more economical approach is in fact possible,
using the earlier and more direct characterization of trigonometrical well-
boundedness given by Theorem (3.3), together with the following variant
of the well known result of Stechkin concerning the boundedness on /P of
convolution by the sequence of Fourier coefficients of a function in BV(T)
when 1 < p < oo (see [5, Theorem 20.7, pp. 377-378)).

(4.9) THEOREM. Let 1 < p < 00, let the weight sequence w satisfy the A,
condition, and let ¢ € BV(T). Then the convolution operator z — ¢ * =
is bounded on IP(w) and has norm bounded by K, .||¢||v, where K, ., is a
constant depending only on the norm of the discrete Hilbert transform H
acting on IP(w).

Proof. This is a simple adaptation of the original proof of Stechkin’s
result as presented in [5)].

It follows immediately from Theorem (4.9) that, if w satisfies the A,
condition with p in the range 1 < p < oo, then ||g(U)|| £ K, u||g||v for
all trigonometric polynomials ¢, when U is considered as acting on I?(w).
Hence, by Theorem (3.3), U is trigonometrically well-bounded.

5. The norm growth of iterates and trigonometrical well-bound-
edness. A well known result of B. Sz.-Nagy [5, Theorem 8.1, p. 188] implies
that an invertible operator V on a Hilbert space H is similar to a unitary
operator if and only if ||V*|| = O(1) as |n| — oo, whilst a related result of
J. Wermer asserts that a bounded operator on H is a scalar-type spectral
operator if and only if it is similar to a normal operator [5, Theorem 8.3,
p. 190]. Putting these results together, it is seen that V is a scalar-type
spectral operator with spectrum contained in T if and only if |V*|| = O(1)
as |n| — oo.

Since trigonometrically well-bounded operators are invertible and have
a spectral diagonalization (3.2) reminiscent of (but in general weaker than)
that of scalar-type spectral operators, it is natural to ask whether trigono-
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metric well-boundedness for an invertible operator V on a Hilbert space can
likewise be characterized by the behaviour of |V*||. One simple necessary
condition on the growth rate of ||V"|| for trigonometrical well-boundedness
is that ||V*|| = O(|n|) as |n| — oo. This is easily seen by noting that, in the
notation of (3.1), V™ = &(x»), where x,(t) = e™, and ||xx||lT = 27|n| + 1.
However, as Example (5.2) below illustrates, this growth rate on ||V*|| is
not sufficient for trigonometrical well-boundedness. Indeed, further exam-
ples are given to show that no growth rate on ||V"|| can simultaneously give
a necessary and sufficient condition for trigonometrical well-boundedness.

(5.1) EXAMPLE. Define the weight sequence w(!) by setting wg) = |k|¥
for k € Z \ {0} and wf,l)=1,where0<a<l. For1<s<t< oo,

82 + t2 _ sl-atl+a - tl-asl+a

(jz“dz)(jz‘“dm): T o2

(t—s)’
S 1_a2 ’

since s!—otlta 4 tl-aglta > 95t Therefore, by (2.4)(iv), w(!) satisfies
the A; condition on N, and hence on Z by (2.4)(ii). Let U; denote the
bilateral shift on i?(w(1)). Then U; is trigonometrically well-bounded and
U2 = (1 + |n|)*/? for n € Z by (1.3).

(5.2) EXAMPLE. Define w(?) by setting wf) = k% fork > 1 and wg) =1
for k < 0, where 0 < @ < 1. Then the bilateral shift U; on 1*(w(?)) is
bounded and invertible by (1.2), and satisfies

103l =(1+2)*? (n20), |UF=1 (n<0)

by (1.3). Thus ||[U}|| = O(|n|) as |n| = oo. However, w(?) does not sat-
isfy the A, condition by (2.4)(iii) and so U, is not trigonometrically well-
bounded.

(5.3) EXAMPLE. Let V = U, & U;! on I>(w®) @ I2(w®). Then V is
bounded and invertible, and ||[V"]| = (1 + |n|)*/? for all n € Z. However,
V is not trigonometrically well-bounded. This is easily seen by noting that,
if it were, then its restriction U, to the first direct summand would also be
trigonometrically well-bounded by Theorem (3.3), contradicting (5.2).

Examples (5.1) and (5.3) thus give two invertible Hilbert space opera-
tors U; and V, the former trigonometrically well-bounded and the latter
not, with ||U|| = ||[V"|| for all n € Z. Hence there can be no condition on
the norms of the iterates of a Hilbert space operator which is both necessary
and sufficient for trigonometrical well-boundedness.
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(5.4) Remark. It was shown in [2, Theorem (1.2)] that, for a trigono-
metrically well-bounded operator V' on a reflexive space, the norm bound-
edness of {V™ : n € Z} implies that

sup{||sn(V,t)||:n €N, 0 <t < 27} < 00.

Example (3.13) in [2] showed that the converse implication was not valid.
That example was on a non-Hilbert reflexive space. The above Exam-
ple (5.1), taken with Theorem (4.2) and the fact that ||s,(U,0)|| = ||sa(U, t)||
for n € N and 0 < t < 27 when U is a bilateral shift (see the proof of the
implication (iii) = (ii) and (iv) in Theorem (4.2)), provides an example on
Hilbert space of the failure of this converse implication.
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