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Introduction. The purpose of this note is to refine the result of [2] on
the existence of C1*¢-harmonic functions on Ri (d > 3) for which V f van-
ishes on a boundary set of positive measure. Using some new ingredient-
originating from [1], one actually gets vanishing of f, V f simultaneously
(see the Theorem below). The problem whether this may happen for func-
tions of class C? or C* remains open (see the remarks at the end). The
present construction is based on the same techniques as in [2] but in this
case is simpler because the correction theorem is applied to scalar functions
rather than to vector-valued ones. The reader may wish to consult [2] for a
motivation and more detailed discussion of this problematic.

THEOREM. Ifd > 3 there is a harmonic function f : Ri — R which
is C! up to the boundary and such that f and Vf vanish on a common
boundary set with positive measure.

Outline of proof is as follows. Start with a function uo which van-
ishes on an open subset of the boundary. Using a successive modification
(“correction theorem”) procedure, decrease the normal derivative to 0 on a
subset with large measure. To get the Theorem it is necessary to keep the
original function unchanged on a set with large measure. Thus the functions
added on during the modification procedure must have small compact sup-
port. The idea for constructing those functions is due to A. B. Aleksandrov-
P. Kargaev [1] who used it for a closely related problem.

LEMMA 1. Ifp> 0 is small enough then for all sufficiently small ¢ there
is F : R*"! — R with supp F. C D(0,e1/?) (= {z € R*"! : |z| < €1/2}) and
(letting F, be its harmonic eztension to Ri)

[ (1+dF./dn]P - 1)dz < —n
Rd—l

with n > 0 independent of e. Moreover, |VF,| < min(e~¢, |z|-%) on R*"1.
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Proof. Aleksandrov-Kargaev use the function G, : Ri — R defined
by G.(z) = —(¢ + z4)/|z + ceq|? (eq = the unit vector in the zy direction)
which, as they show, satisfies f(|1 + dG./dn|P — 1)dz < —2M < 0 for p
below a certain critical number and ¢ sufficiently small. One can go from
this function to F, as above, as follows:

Let § = €1/2 and for j = 0,1,2,... let ¢; : R*~! — R be.functions with
suppt; C {27716 < |z| < 27+16} and 3" ¢; = 1 for |z| > 6, and with the
natural bounds, i.e. |V¥9;| < (296)7%. Let ¢ = 3 ;. Let of = ¢;G,,
P = EJ- ol = ¥G,. Let F, = G, — p.. To make the estimates, let V7 be
differentiation in the R*~! directions. Then |VAG,| < ¢]z|~(4+F) k = 0,1,2.
Therefore |V40i| < ¢(296)-(4+¥). This implies ||Vroi|y < €(276)~2%, and
also ||V1el|lca < e(296)~(¢+1+2) By L! — weak-L! and Holder estimates
for the Riesz transforms we have

[{z : |(del/dn)(z)| > A}| < €(276)72271,
ldot/dnl|ca < e(296)~(4¥1+e)
It follows that |(d;i/dn)(a:)|| < £(296)~(4+1) when |z| < 2-27+1§ (the weak
type 1 estimate implies this holds for some z with |z| < 2-27+1§ and the

Holder estimate extends it to all such z). Furthermore, if |z| > 2 - 27+1§
then

const- [ |z- yI~%0i(y) dy| < e(296)7|z| ¢,
lyl<27+1s

doi
| 2)

using |i| < £(276)~%. In other words, we have |dpi/dn| < £(296)"!
x min(|z|~¢,(276)~%) on R¥~!. Summing over j we obtain

(*) |doe/dn| < €67 min(679,|z|~9).
Then for small p and appropriate 5

p

dG.
dn

P dF,
-1),+ f(‘1+ o
dG,
dn

<)

dG,
=(f‘” dn

)
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dF, P\
[ (+% )< [
|lz|<1 lzl<1 7
((a+b)? < aP + b? when p < 1) and (*) implies this goes to 0 with e. When
|z| > 1 we have a lower bound for |1 + dG./dn|, and |dp./dn| is small. It

follows by the mean value theorem that |1 + dF./dn|? — |1 + dG./dn|? <
C|do./dn| and therefore that

dF.
f ('1 + dn

z|>1

Now

p p

dGe
dn

deo.
dn

—l1+

th
dn

do.

< Ceb™?,

P
~J+

V<o |

lz|>1

which again goes to 0 with ¢. That proves [ |1+ dF./dn|P — 1 < —1.

To prove |VF,| < min(¢~¢,|z|~%): this estimate is obvious for |VG,|
and for |Vro.|. For |dg./dn| it follows from (x). =

LEMMA 2. If N is large enough there is a constant 3 = B(N) > 0 such
that if Q C R*™! is a cube, aqQ its center and I : Q — R is a function such
that N4=1|I(aq)| ! sup,¢q |I(z)—I(aq)| is sufficiently small (independently
of N and €) then

(Q d

I(z) +

P 1/p
"’) < 7| I(ag)1QIM?.

J " (V@) ~ ag))

Proof. We can assume @ = Q(N)=[-N/2,N/2]x...x[-N/2,N/2].
It is then equivalent to show that if N4-1||I — 1|, is sufficiently small then

P
f (|I+ dF, -1) < -7
dn
Q(N)
for suitable > 0. This last inequality is true since
P oop
f 1_|_dF, _1+ch| de
dn dn |
Q(N)
< J o+
Q(N)\D(0,1) D(0,1)
<¢ [  HU-1dz+ [ [I-1Pde
~ Q(N\D(0,1) D(0,1)
(because 1+ dF,/dn is bounded away from 0 when |z]| > 1)
<CM = 1| N1 4+ CI - 1]oo

which is small. It remains to apply Lemma 1. =
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Now we give the recursive construction. For a sufficiently large N to be
determined, choose 8 according to Lemma 2. Also fix sequences K, — oo,
£ \\ 0 (to be determined). Constants denoted by C will be independent
of these choices. Let ug be a smooth function on R?~! which vanishes on

Q(1

« \3Ve will drop the ~ notation and identify functions on R%~! with their
harmonic extensions when there is no confusion.

If the nth stage of the construction has been done (n > 0) we will have
the following data: a number §,, > 0 with §;! € Z, a subset G,, C H,, where
H., is the collection of & (*~?) cubes of side §, whose union is Q(1), and a
smooth function u, such that

»\ 1/p
) < Ae~Pr

(J

J
where V,, = J{Q : Q € G,}, B is as above and A is a sufficiently large
constant which is independent of n. To start take §p = 1, Go = {Q(1)}.
To do stage n + 1 choose 8,41 with 6,/6,41 € Z such that é,4; is
extremely small—how small will be determined later. G, 4, is then all cubes
Q@ € Hyp41 such that

(a) the cube Q' € H, with Q C Q' satisfies Q' € G,, and
(b) (lQl_l fQ ldun/dn!p)l/p < Kn+1é_ﬁ".

Let ag be the center of @ and define

du,
dn

du,

Un41(2) = Un(e) + S T(0Q)Fey iy (N6 (2 -
Q€9.+1
so that
du,
Vun-’-l(m) = Vun(z) + Z dn (a’Q)VFE.-;»l (N6n+1(z a’Q)) .
QGG.‘}I
LEMMA 3.
Z |VF¢-+:(N5n+1(3’ - aq))| < C"’V-d&u+10_1

QEGat1i|z—aql>e
for all p > const - 6ny1 and z € R! (C depends on a lower bound for
Q/6n+l)- '
Proof. The left hand side is < 35|, _, |5 (N6nislz - aq|)‘d by the

last part of Lémma 1. Lemma 3 follows by considering ¥ 637 Tilz —ag|™% as
Riemann sum for flzl>o |z|~? dz, which is justified as long as /6,41 does
not approach 0.
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COROLLARY. If 8,1, is small enough, then on R,

Proof. Assume for notational purposes that z € @ € G,41; the oiher
case is a little simpler. If §,4; is small, then by (b) and smoothness of u,,
we know

|Vun(aq:)| < 2Kn+1e'ﬂ"
for all Q' € Gpn41. So
[Vuns1(z) = Vaa(@)| S D0 [Vun(a@)lIVFe,,, (Vo1 (2 — ag))|

Q'€EGn41
Q'#£Q

+ |Vun(aQ)”VF8n+1(N6n+l(z - aQ))I

< 2UWnpre™™ | Y |VFe (No](z - ag))]
Q'#Q

£V Fera (N871(2 = ag))]
< 2Ixn+1e ‘@"(C' + Csn+1

where the sum was estimated by Lemma 3 and the other term by Lemma 1.
]
Next we verify the induction hypothesis at stage n + 1, i.e.

LEMMA 4. If A is large then (fV-+1 |dupy1/dn|P)1/P < Ae=Bln+1)

Proof. First we show the following statement: suppose ¥ > 0 is given.
Then if 6,41 is small enough we will have for any z € Q € G 41

(*) z dun

Q'€Gn 41
Q'#Q

Proof of (*). Fix M < 0o and split the sum into 3,
and ZQ'.].’L‘—-GQ1|>M6.+1 Then

du
Z < s_up(lqnﬁ(aq.)| tlz —agr] < M6,,+1)

Q':|z—agi|[<Méy 4,

du,

IVFe, . (N623(z - ag)) < CN™4 =2

~n &)

(aq') +7.

I.’B-—aQi I<Mé&p 41

X Z |VF€-+1(N6;41—1(z - a‘Q'))I
Q#Q

<CN™¢ sup()%‘—‘ﬁ(aqn)

(by Lemma 3 with ¢ = 16,41)

: |:c - aq:l < M6n+1)
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%(z)' +7)

where 7 — 0 as §, — 0 by continuity of |du,/dn|. Also

du,
z < SUP( E(y)l 'Y€ Vn+l)

Q:lz—agi|>Mby 42

<CN“’(

X E IVF€.+1(N6n+1(z - aQ'))I

|z-aQ:|>M6..+1
<2WKnpe™ Y |VE  (No(z - aq))l
|z—agi|>Mbn 4
(provided é,4 is small enough)
S CK,H.le'ﬁ“ . Al-l
by Lemma 3 (p = Mé,41). Since M is arbitrary we can make this as small
as we want, which proves (*).

Now, we will call Q € G,41 type 1 if |(duyp/dn)(ag)| > e—48(n+1) a4
type 2 otherwise. Fix Q € Gn41. Write (for z € Q)

dunt1 ) _ dUn (ao)+[“’""()— U 10)
T DR LN T N aq:))]

Q'#Q
Q'€ECgn 41

(aQ) "‘“ =2 (Néiia(2 - aq)) -

By (*) and smoothness of du,,/dn the term in brackets may be made less
than CN ~¢|(du,/dn)(ag)| + 7 with v arbitrarily small. For @ type 1, the
bracketed term is therefore < CN~9|(du,/dn)(ag)| provided v is
chosen right. So Lemma 2 applies (we are using here the fact that CN~¢ <
¢N~(4-1) for large N) and we get

p) 1/p

1
(f p) /p<e"w d
Q

Up

e Cle)
if 6,41 is small. If Q is type 2 the bracketed term is < CN ~%|(du,/dn)(ag)|
+ v which may be taken < e““’("“) So,

dun+1 du, du,

du,,

dun-l-l
dn

dun
dn

1QIY/? < e-3ﬁ/2( f

diun i |° dun+1 dF., ., -1 P
Qf__dn < f L +Qf[]

< 26-4ﬁ(n+1)p|Q|
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since (sa.y) the first integral is < |@| by Lemma 2. We conclude
¥ J o+ ]
Va+1 U{Q type 1} U{Q type 2}
<ewon [ | !

U{Q type 1}
< APe—PA(nt1)  o—PB/2 4 (e—4pB(n+1)

dun+1
“dn

+ Ce—1pA(n+1) Z Q]

Q type 2

= Ape-pﬁ(n+1)(e-pﬁ/2 + CA-pe—apﬁ(nH)) )
The parenthetical term is < 1 if A was large enough. =
Now we give the conditions on the K, and ¢,: they should satisfy
(1) Tend1 Knpre" < oo, |
2) X K.+ s:ill)/z is sufficiently small.

These are clearly compatible, e.g. we can take e, = C~1n~2, K, = Cn?/P
for a suitable large constant C.

Condition (1) implies by the Corollary to Lemma 2 that the %, converge
in C! norm on the closed upper half space. Call the limit function f. We
have to show f = df/dn = 0 on a set of positive measure. But

{z € Q): f(2) #0} < ) I{z € Q(1) : uay1(2) # ua(2)}|

and {z : up4+1(z) # un(z)} is a union of at most 6,14(,1 1 discs each of radius
6n+1£}‘/+21 (because of supp F, being contained in D(0,&/2?)). So,

{z € Q(1): f(2) # 0} < C Y 6747 (buprellt) 1 <€ 3 eldDr.
Also, df/dn =0on (), Vu. Thus
g
{seq: L@ o)l < Tm\val.

What is the measure of V, \ V41? If Q € Gny1 but Q C Q' € G, then

Q1! f ldun/dn|? > KE e PP" | e |Q|< K P e~PP" fldun/dnl".
? Q

So,
duy |7

Vo \ Vasa| < K e | in

Va
and |[{z € Q(1): (df/dn)(z) # 0} < APY K. T,. That means |{z € Q(l) :
(df/dn)(z) # 0}|+|{z € Q(1) : f(z) £ 0}| S C L &2+ Ar S K27, <

<APK P,
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if (2) holds. So Q(1)N {z : (df/dn)(z) = 0} N {z : f(z) = 0} must have
positive measure.

Remarks. 1) To minimize technicalities we did not try to obtain a
Holder estimate on the gradient although this should be possible along the
lines of [2].

2) The main question remains open, that is, whether it is possible to have
harmonic functions C? or C* smooth up to the boundary whose gradients
vanish on sets of positive measure.
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