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ON MARTIN’'S AXIOM AND PERFECT SPACES
BY

TEODOR C. PRZYMUSINSKI (WARSZAWA)

We show that Martin’s Axiom (MA), together with relatively mild
conditions imposed on a space X, implies that X is perfect provided that
X is a union of less than continuum compact subsets. This leads to a
strengthening of Theorem 1 from [1].

Assuming MA + TJCH we construct an example of a locally compact
separable Moore space which is countably paracompact but not normal.
This example answers one of the questions agsked by Juhdsz and Weiss
in [6]. :

A space is submetrizable if it has a weaker metric topology. A space
(X, ) is cometrizable ([1], see also [9] and [3]) if it has a weaker metric
separable topology u such that v is regular with respect to u (i.e. if for
every x € U € v there exists a V ev such that ve V < Cl,V < U).

A space i perfect if its closed subsets are G,-sets. A space is perfecily
normal if it i3 normal and perfect. A space X has a G,-diagonal (regular
Gy-diagonal) if there exists a countable family {G,},.., of neighbourhoods
of the diagonal 4 = {(»,2): 2 € X} ¢ X* such that

4=N6G 4=N4a,).

n<o n<o

A family # of open subsets of X is called a pseudobase (regular pseudo-
base) if for every # € X we have

@ =N{U:2eUTex} ({o} =N\{U:2eUex}).
We say that X is a small-size space if it is the union of less than 2°
compact subsets, in particular, if its eardinality |X| is less than 2.
THEOREM 1. (MA) If a small-size X has a countable regular pseudo-
base, then X” is perfect.
THEOREM 2. (MA) If a 8pace X of cardinality less than 2° has a countable
pseudobase, then all subsets of X are G,-sets and the space X” is perfect.

In Theorem 2, which is a slight generalization of a result due to Silver
(cf. [14], Lemma 3), it suffices to assume that X has a g-point finite pseudo-
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base (see Remark 3). Before proving Theorems 1 and 2 let us derive some
corollaries to them.

COROLLARY 1. (MA) If a small-size X is submetrizable, then X° is
perfect.

Proof. Since every submetrizable compact space is metrizable, and
thus has cardinality less than or equal to 2°, the space X has cardinality
less than or equal to 2”. A countable base for the weaker metric separable
topology on X ([9], Proposition 1) is a countable regular pseudobase
for X.

The following corollary is a strengthening of Theorem 1 from [1]:

COROLLARY 2. (MA) If a small-size X 18 cometrizable, then X is perfectly
normal. .

Proof. By Corollary 1, X” is perfect and, by Theorem 1 in [1], X"
is normal for every # < w. Thus, by Katétov’s result [7], X* is perfectly
normal.

COROLLARY 3. (MA) If a subparacompact space of cardinality less than
2° has a G,-diagonal, then all subsets of X are G,-sets and the space X* is
perfect.

Proof. It is proved in [12] that ‘every subparacompact space with
a G,-diagonal and cardinality less than or equal to 2” has a countable
pseudobase.

COROLLARY 4. (MA) Every subset of a semistratifiable space of cardi-
nality less tham 2% is a G,.

COROLLARY 5. (MA) Every subset of a Moore space of cardinality
less than 2° is a G,.

Remark 1. Reed [10] has obtained Corollary 5 under the additional
agsumption that the Moore space is normal, as a consequence of the fact
that normal Moore spaces of cardinality less than or equal to 2® are sub-
metrizable [12]. The Example shows, however, that there exist even locally
compact, separable Moore spaces of cardinality o, which are neither
normal nor submetrizable and which also do not have countable regular
pseudobases (see also [11]).

COROLLARY 6. (MA) If X i3 a small-size paracompact space, then
X ig perfect iff X has a G,-diagonal.

Proof. Borges [2] and Okuyama [8] proved that a paracompact
space with a G4-diagonal is submetrizable.

COROLLARY 7. (MA) If X i3 a small-size separable space with a regular
G,-diagonal, then X t8 perfect.

Proof. Every separable space with a regular G,-diagonal has & count-
able regular pseudobase ([6], Lemma 2.6).
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Remark 2. It is easy to verify that all the above-stated results are
actually independent of the ZF(C axioms of set theory. Also, almost all
of the assumptions appearing in their statements are essential. The fol-
lowing problem, however, seems to be open:

ProBLEM 1. Does MA imply that every small-size space with a count-
able pseudobase or a G,-diagonal is perfect? (P 1203)

The proofs of Theorems 1 and 2 are based on the following set-theoretic
proposition, which is known to be a consequence of Martin’s Axiom (see,
e.g., [13]):

(S) Let of and # be families of cardinality less than 2 of subsets of
o such that AN\ J¥ is infinite for every A esf and for a finite subfamily
€ of B. Then there exists a subset E of w such that A NE is infinite for every
A e, and BNE 18 finite for every B € &.

Proof of Theorem 1 (cf. [14]). Let € be a family of cardinality
less than 2” of compact subsets of X such that X = |_J&. Since X has a count-
able regular pseudobase, there exists a countable family ¥ = {G,},<.
of open subsets of X such that, for any two disjoint compact subsets
K and L of X, there exists an » < w for which K <« @G, =« X\ L.

We can assume that every element G of ¥ appears in the sequence
{G@,},<. infinitely many times.

The existence of ¥ implies easily that every compact subspace C of X
has a countable base, and thus is metrizable.

It is enough to prove that X is perfect, because all finite products
X" of X also are of small-size and have countable regular pseudobases,
so that it suffices to recall that if X" is perfect for every n < w, then X*
is perfect [b].

Let F be a closed subset of X and let

X ={FnO0:Ce¥}.

Since for every C € ¢ the set C\F is an F, in C and hence in X, there
exists a family & of cardinality less than 2° of compact subsets of X such
that X\F = | J&. Thus we have

Ux=rF, UxvUe=X, UxXnUg =0.

For every KeX let Ax ={n< w:K c @,} and for every Le%
let B;, = {n < w: LNG, # 9} Put
oA ={Ag:KeX} and @R = {By:Le¥}.
Clearly, the families & and # of subsets of w have cardinality less

than 2°. Let us choose a K € X' and a finite subfamily L,, L,,...,L,
of #. The set

m
D = A\B,,

fel
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is infinite. Indeed, since the set
m
L = UL‘

=1
is compact and disjoint from K, there exist infinitely many » < w such
that K < @, « X\ L. Any such n belongs to D.
By (8) there exists a subset F of w such that Ay ¥ is infinite for
every K € " and B; NE is finite for every L € #. Let us put
U, =\J{G,:neF and n > m}.
It suffices to show that
F=N0U,.
im<o

For every m < w and K € X" there exists an #» > m with n e Ag NE,
which implies K =« @G, = U,, and F < U,,. On the other hand, for every
L € & there exists an » < w such that B,NE contains no #» > m. Thus

'LNUy =@ and (U,c<PF,
m<o
which completes the proof.

Proof of Theorem 2. This proof is completely analogous to the
previous one, so we only sketch it (see also [14], Lemma 3).

Let X be a space of cardinality less than 2” with a countable pseudo-
base ¥ = {@,},<o- We can clearly assume that ¢ is closed under finite
intergsections and that every element G of ¢ appears in the sequence
{G,},<. infinitely many times.

Again, it suffices to prove that every subset F of X is a G,. For every
veF and y e X\F put

4, =n<w:ze@,} and B, ={n<ow:yed,.

The families o = {4,},.r and @ = {B,},x.r clearly satisfy condi-
tions of (S). Take E — » whose existence is assured by (8) and put

Un =\J{G,:neE and » > m}.

One easily verifies that
F =) U,

. m>w
Remark 3. After the results of this paper had been completed the
author learnt of a joint paper [4] by Fleissner and Reed and noticed that
Theorem 3.1 from their paper follows immediately from our Theorem 2
and
PROPOSITION. A space X of cardinality less than or equal to 2% has
a countable pseudobase if and only if it has a o-point finite pseudobase.
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Proof. Let
2=\a,

n<o
be a pseudobase for X such that all families %, are point finite. Let
f: # - R be an arbitrary one-to-one function into the real line R and let
{Up}m<o Pe a countable base for R closed with respect to finite unions.
For every n, m < w put

Vo = U{Be®,:f(B) ¢ U,}.

It suffices to show that the family {V, .}, m<e i8 & pseudobase for X.

Let @,y € X and @ # y. There exist an # < w and a Be %, such that
zeBc X\{y}. Let 2* = {Be®,:y e B}. There exists an m < w such
that f(#*) = U, = R\{f(B)}. Clearly, o€V, < X\{y}.

Example. A locally compact separable Moore space X with a count-
able pseudobase which is neither normal nor submetrizable and does not
have a countable regular pseudobase nor a regular G,-diagonal.

MA 4 7ICH implies that X is a small-size countably paracompact
8pace.

The Example answers a question asked by Juh#&sz and Weiss ([6],
a remark following Lemma 2.5) whether every locally compact Moore
space of cardinality less than or equal to 2® has a countable regular pseudo-
base. Recall that every Moore space of cardinality less than or equal to
2® has a countable pseudobase [12].

The Example seems to be also the first known example of a locally
compact countably paracompact non-normal Moore space (cf. [11]) and
leads to the following

ProBLEM 2. Is the existence of a locally compact countably para-
compact non-normal Moore space independent of the axioms of set theory
(P 1204)

Let usrecall that the existence of a normal locally compact non-metri-
zable Moore space is independent of the axioms of set theory.

Construction of the Example. We use the splitting technique
from [11]. Let C be the Cantor set and let 4 be the diagonal {(z, z) : z € C}
of 02. Choose a subset F of C of cardinality w, and let E, and H,; be two
disjoint copies of E which are also disjoinit from C* and assume that if 2 € B,
then z, and z, are counterparts of z in B, and E,, respectively. Let X
= (*\AUE,UE,. We generate a topology on X. Points (2, y) € (*\ 4
will have usual neighbourhoods inherited from C2

For ze E put

A(2) = {(2,9):y €0 and y > 2},
B(?) = {(#,2):x€C and o < 2},

3 — Colloquium Mathematicum XLIV.2
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U() ={(»y)eC:y>20—2 and y > —20+ 3z},
: 1 1 1 3
V(z) = {(w,y) eC’.-é-w+§z<y< —-2—w+§z}.

One easily sees that
A(R)c U(R) = 0\4 and B(x)c V()< o\ 4

and that A (z) and B(z) are closed subsets of (*\ 4, whilst U(z) and V(2)
are open subsets of C*\ 4. Since 0*\ 4 i8 a zero-dimensional metric sepa-
rable space, there exist open and closed subsets G(2) and H(z) of O*\ 4
such that

A(@) c @) U(z) and B(z) < H(z) < V(2).

For every z € E let K, (2) denote a ball in C* of radius 1/s and center
at the point (2, 2). Put

_' Galer) = () (Ea(0)N6(2),
Hn(zz) = {zﬂ}U(Kn(z)nH(z))’ An(z) = A(z)nK,,(z),

and take sets G, (2;,) and H,(z,;) to be basic neighbourhoods of points 2, € E,
and z, € E,, respectively,” with » a natural number.

One easily verifies that X is a locally compact separable Moore space,
being the union of w, compact subsets. We shall show that X does not
have a countable regular pseudobase, from which it will follow (cf. [6])
that X does not have a regular G,-diagonal and is not submetrizable.
The existence of a countable pseudobase follows from [12] but can also
be easily checked directly. It is easy to see that closed disjoint subsets
E, and E, of X cannot be separated by open sets, which implies the non-
normality of X (this follows also from [12]).

Assume that the family {W,},.., of open subsets of X is a regular
pseudobase. For every z € F there exist an m(z2) and an «(2) such that
21 € Gy (2y) © Wiy and 2, ¢ W,,,. There exist an # and an m and an
uncountable subset E’' of F such that n(2) = n and m(2) = m for every
2z € E'. There exist a 2z € B’ and a sequence {z*}, _,, of points of B’ converging
to z such that 2* < 2 for every k < w. Thus

Wa = U A, ("),
k<o

which clearly implies that 2, € W,,, a contradiction.

It remains to show that MA+4 T|CH implies that X is countably
paracompact. This, however, follows easily from the fact that under
MA + TICH every subset of F is a relative G,.
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