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CHANGES OF VARIABLE WHICH PRESERVE
ALMOST EVERYWHERE APPROXIMATE
DIFFERENTIABILITY

BY

JAMES FORAN (KANSAS CITY, MISSOURI)

The purpose of this paper is to characterize the class of changes of
variable (homeomorphisms) which preserve almost everywhere (a.e.) approz-
imate differentiability; that is, the class of homeomorphisms H such that,
for each approximately differentiable a.e. function ¥, the composition
FoH is also approximately differentiable a.e. As a by-product we also
find that the same class is the class which preserves a.e. derivability of
a real function. For this purpose we need the following definitions:

(i) The density of a measurable set E at x, is
. |EnI|
lim
-0 Il

(ii) Fap(w) = L if there exists a measurable set E whose density
is 1 at @, such that

where z, € I.

F (x) —F (w,)
x—x, ~

where the limit is taken through x +# z,, z € E.

(iii) A set F is said to be open in the density topology (D-open) if each
point of F is a point of density (i.e., of density 1).

(iv) A function F is said to be continuous in the density topology if
the inverse image of D-open sets is D-open.

The following theorem characterizes the class of changes of variable
which preserve approximate derivability a.e.

THEOREM. A homeomorphism H preserves a.e. approximate differen-
tiability if and only if H is continuous a.e. in the density topology and this
holds if and only if H™! is absolutely continuous. Furthermore, this result
also holds true if the approximate differentiability is replaced by ordimary
differentiability.
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The theorem follows from the three lemmas given in the sequel.
Note that the measurability of the sets constructed will generally be as-
sumed. The proof of measurability is by standard methods.

LeMMA 1. Let H(x) be a homeomorphism on an interval [a, b]. Then
H (x) i8 continuous in the density topology a.e. if and only if H™" is absolutely
continuous.

Proof. Suppose H~! is not absolutely continuous. Then H~! does
not satisfy Lusin’s condition (N); i.e., there exists Z in the range of H with
|Z] = 0 such that |H~1(Z)| > 0. Let « be any point of density of H (%)
and let A, = Z°V {H (z)} (here Z° denotes the complement of Z). Since
A¢ is of measure 0, H(x) is a point of density of 4,. However, H !(4,)
=H"Y(Z°u{z} and « is not a point of density of H~'(4,). Since almost
every point of H™1(Z) is a point of density of H~!(Z) (the set H 1(Z)
can be chosen to be measurable), H is discontinuous in the density topology
at almost every point of H™!(Z).

Suppose H~! is absolutely continuous. Then H does not take any set
of positive measure into a set of measure 0. Let A; be the set of points
x where H'(x) = 0, let A, be the set of points # where H'(x) is infinite,
and let 4, be the set of points # where H'(x) does not exist. Suppose H is
not continuous a.e. in the density topology. From the equalities |A4,|
= |44| = 0 we infer that A, A, are negligible sets. Since |H (4,)] = 0 (})
and H~! is absolutely continuous, |4,| = 0. Let B = [a, b]\(4,UA4,UA,).
Without loss of generality, we can assume that H is increasing. Let
B, = {z | 1/n < H'(x) < n}. Then B = | JB,. Let D be the set of points
where H is discontinuous in the density topology. We show that, for each
natural number n and % > 0, the outer measure of DNB, is less than 7.
It follows that D is measurable and |D| = 0. It suffices to consider n for
which |B,| > 0. Since H’(x) is a measurable function, from Lusin’s theorem
it follows that there is a closed subset B of B, on which H'(x) is continuous
and such that |B,\B|< 7. Let B’ be the set of points of density of B.
Then |B’| = |B|, and hence |H(B’)| > 0. Since almost every ¥ e H(B’) is
a point of density of H(B’), we infer that, except for a set of measure 0,
every # € B’ is mapped to a point y € H(B’), where ¥ is a point of density
of H(B'). Let C be the set B’ less the subset of B’ of measure 0 whose
points do not map into points of density of H(B’). All that remains is to
show that H is continuous in the density topology at each point of C.
Let x, be any point in € and let A be a set with , € A such that H(4)
has H (x,) as a point of density. It remains to show that 4 has x, as a point
of density. Since H is a homeomorphism, we have H(A)NH(C) = H(ANC),
and thus H(ANC) has H(x,) as a point of density. Choose ¢ > 0 so small

() See p. 226 in: 8. Saks, Theory of the integral, New York 1937.
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that H'(z,) > e. Choose &> 0 such that if I is an interval with x, e I
and |I|< 6, then the maximum value of H'(x) on INC is less than
H' (2,) +¢,

|H(I)| > H' (®s)—e and |H(I)|/|[HANCNI)|< 1+e.

This can be accomplished because H' is continuous on C, H is differ-
entiable at z,, and H(ANC) has H(x,) as a point of density. Let I be any
interval with z, € I and |I| < 4. Suppose |[ANCNI| = 0. Since H'(x) exists
at each point of ANCNI, we have H(ANCNI) = 0. But this cannot hap-
pen if H(xz,) is to be a point of density of H(ANC), so |[ANCNI|> 0.
Since

|H(ANCNI)| < |ANCAI|(H' () + ),

we get
[H(ANCNI)| ,
< .
However, from the inequalities
|H (I)]
<
@) HAnCnD S1t°
and
" o1
’ HD] ~ H (2o —e
it follows, by combining (1)-(3), that
| H' (zy)+e
- < - .
l[ANCNI| (1+e) H' (1,) —¢

Thus ANC has z, as a point of density and H is continuous in the
density topology at z,. Since #, was an arbitrary point of C, H is continuous
in the density topology at every point of C.

LEMMA 2. Let )# be the set of homeomorphisms H such that, whenever
F i3 a function which is approrimately derivable a.e., Fo H is also approz-
tmately derivable a.e. If H™' is absolutely continuous, then

Hex# and (FoH)y(x) = Fu(H(x))-H' (%) a.e.

Proof. By Lemma 1, if H~! is absolutely continuous, then H is contin-
uous a.e. in the density topology. Let D be the set of points of continuity
of H in the density topology and let E be the set of points where H'(z)
exists, is finite, and non-zero. Since H™! is absolutely continuous, the set
(H')~'({0}) has measure 0, its H-image being of measure 0. It follows
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that almost every point in the domain of H belongs to ENnD. Applying
the chain rule, we infer that Fo H is approximately derivable a.e. For let
Bbe the set of points where F,, () exists. Then since the relative complement
of B in the domain of F has measure 0, H~!(B) is almost all the domain
of H . Let A = H ' (B)nDNE, let z,¢€ A, and y, = H(z,). Then there
is a set G which has y, as a point of density on which F'(y,) exists.
H~Y(@) has z, as a point of density. It follows that

F(H (x)) — F(H (2,))

(FoH),(2,) = lim

T—>T0 T —T,
zeH—1(@)
— lim F(H (»)) — F(H (,)) lim H(z) — H (x,)
- H(.’L‘) —H(mo) z->xg T —&,
zeH—Y@)

provided both limits exist. But H(x) # H (w,), H’ exists at @, and Fy,
exists at H(z,) where the limit is taken through points H(x) = yeg@.
Thus both limits do exist and the lemma is proved.

LEMMA 3. If H is a homeomorphism and H~" is not absolutely continuous,
then there exists a continuous function F whose derivative exists a.e. such
that Fo H is not approximately derivable a.c. (That is, the collection of homeo-
morphisms H such that H™' is absolutely continuous contains the class #.)

Proof. Suppose H™! is not absolutely continuous. Then there exists
a set P such that |P| > 0 and [H(P)| = 0. Clearly, P can be chosen to be
a perfect set. It is well known that there are continuous functions which
are nowhere approximately derivable. Let G be such a function. Define
G, to be G on P and to be linear on intervals contiguous to P. Then @,
is continuous and is approximately derivable on at most a set of measure
0 of P. Let F = G,0H". Since @, is monotone on intervals contiguous
to P, G,o H™'(x) is monotone on intervals contiguous to H(P). Thus F
=G, 0 H™! is differentiable a.e. However, G, = FoH is not approximately
derivable on a set of positive measure (namely, almost all of P). Thus
Lemma 3 is proved.

Note. If F is differentiable a.e. and H e s, then Fo H is differentiable
a.e. For if H € #, then H~! i3 absolutely continuous and 4 = {& | H'(z)
exists, is finite, and non-zero} is almost all of the domain of H. Let Z
= {y | F'(y) does not exist}; then |H™'(Z)| =0. Let @y ANH(Z).
Then the chain rule applies and we get

im F(H (x)) — F(H (x,))

Ty r '—wo
. PH@)-FH@,) , H) —H@,)
B :Eo H (») —H (x,) :1210 T—Ty

= F'(H (x,))-H' (%,),
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where both of the limits in the product exist because H(x) # H(x,),
F’ exists at H(x,), and H'(x,) exists. Thus  is also the set of changes
of variable which preserve the derivative a.e.
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