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0. Introduction. This paper contains some topological applications
of Hessenberg’s natural sum of ordinal numbers. Algebraic properties
of this operation were studied by Sikorski in [3].

Our Theorem 1 generalizes the known formula for the derivative,
i.e. the set of limit points, of a cartesian product of sets in topological
spaces. Theorem 2 gives a topological definition of the natural sum and
some applications to dispersed spaces. Finally, we give conditions under
which the derivative of a set is closed and other related facts as well as

proofs of the theorems.
It seems that it is the first time that Hessenberg’s sum found an

application apparently distant from its definition.

Gratefull acknowledgement is made to Professor C. Ryll-Nardzewski
and Professor J. Mycielski for their encouragement and assistance at
many stages of this work.

1. Main results. A" denotes the set of all limit points of a set A
in a topological space X and it is called the derivative of A. We put A©®
— A, where A4 is the closure of A, and

AW N (A(“))(l)
a<ly
for y > 0. If AW is a closed set, then A® is also closed for all a > 0 (see
(2) in section 3), and if 0 < a < f, then A® < A®,
It is well known that
(AxB)W = ADx B & Ax B® = AW x BO® (, A® x BO),

where X denotes the cartesian product operation. From this formula
it follows by induction that

(%) (AxB)™ = Y AYxBD  for all new,.
14+j=n
a®f denotes Hessenberg’s natural sum of ordinals «, 8 (see [2] or
[3]) which can be defined as follows:
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Let a =a;,4+...+ay,p = p1+...4+pn be the expansions of any
given ordinals «, f# into prime components (see [2], p. 282), where qa,
=>...=2ayand f; >=... = f,. As it is well known, these expansions are
unique. Let 9, ..., Ymin be the sequence formed from the sequences
Opyeeey Oy and By, ..., B, in such a way that y, > ... = y5,.». Now we
define a®pf = y1+ ...+ Ymon-

Obviously we have a®0 = a, a®f = f®a, a®(f+1) = (a®p)+1,
a; < @y <> (a;®P < ay®p).

The following result generalizes formula ().

TurorREM 1. If the sets AY and BY are closed, then for each ordinal a
(AxB)? = |J AWx B,
p@r=a

Let us note that the conditions of Theorem 1 are always satisfied
in T;-spaces. This known fact follows also from (4) in section 3.

Remark 1. For each ordinal a the set {(u,»): pu®» = a} is finite,
because the expansions into prime components contain only finitely
many summands.

If y is any prime component and the sets AY, B") are closed, then
(A % B)(”) = AN B A0 BO) — AW B 4 xBY.

X is called a dispersed space if there exists an ordinal « such that
X = 0. The first ordinal a for which X® = 0 holds will be denoted
by &(X) and will be called the rank of dispersion of the space X. The
rank of a point x in a dispersed space X is defined by the following formula:

o(x) = a if and only if zeX® — XD,

TurEoREM 2. If X and Y are dispersed spaces and (x,y>eXx ¥,
then o({x,y>) = (@)@ e(y).

As A. Mostowski remarked, this theorem gives a topological defini-
tion of natural sum of ordinals. It is sufficient to take the class of all ordinals
with interval topology (open intervals and the set {0} form a basis for
open sets), and to see that p(w®) = a for each ordinal a. Then a®p
= o(<{® o).

We put Z,, = Z—Z*Y for any dispersed space Z. Then we have
some simple corollaries from Theorem 2, the second of which is a solution
of a problem proposed by B. Weglorz.

COROLLARY 1. If X and Y are dispersed spaces, then (X xXY)q
= U {X(M)X Y(,): H@’V = a}.

COROLLARY 2. If X and Y are dispersed spaces, then E(X xY)
= U {a®f+1: a < EX)AL < E(X)} (M)

(*) As usual each ordinal is identified with the set of smaller ordinals. Hence
both operations | ) and sup coincide on sets of ordinals.
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Really, it is easy to see that

§XXY) = U {o(<a, y0)+1: 2eXAyeT)
= U {e(@)@e(y)+1: 2eXAyeY}
= J {a®p+1:a < E(X)AB < £(Y)}.

Remark 2. Our formulas for (4 xB)®, (X xY),, o(<{z,y>) and
£(X % Y) can be generalized to any finite cartesian product, i.e.

(A, % ...XAn)(“) = { ] {A‘f’ﬂx e X Alen), ®...00, = a},
it AP, ..., AD are closed;
(XX oo X Xy = U {(X1)ay X - -- X (Xn)ayy: u®...Da, = a},
§( XX .. XXy) = U {®...0a+1: 0, < E(X)A... A, < E(XL)},
e({@1y e #)) = 0(#1)D... D 0(wn)

for (@, ..., wp0eX; xX...xX,, if X;,...,X, are dispersed spaces.

It is not interesting to extend the above formulas to cartesian pro-
ducts of infinitely many dispersed spaces because if infinitely many spaces
among them have more than one point, then the product space has no
isolated points and hence all the derivatives are equal.

Remark 3. Theorem 2 and Corollaries 1 and 2 are valid also in all
T',-spaces, if £(X) and p(x) are extended in the following way:

£(X) is the first ordinal a such that X© = X, where X is the kernel
of the space X, i.e.

X =N xO.

(A T,-space X is dispersed if and only if X = 0; see [1], p. 5.)

o(x) is defined for e X —X as above and p(z) = oo for xzeX.

If we put a® co = co@a = oo and co @ co = oo, then we get the
desired results.

2. Conditions for A" to be closed. We have found two kinds of
conditions.
(I) Conditions imposed on A" only, which can be presented in the
following diagram:
A4 = AW
\
Az ¢{m}® < A @} = {@)® > A0 = 40
zed zed

A=1 //7/4
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(IT) Conditions concerning all ¥, where Y < X, which can be
presented in the following diagram:

Xis T,

M — ) o A g {1 o YO =yO,
X is dispersed 7 wé’f{ } i Te/>f #12) Y{C\X

The next diagram presents the consequences of the above conditions:

AYV=YUV>3Xis Ty> A YO = YO,
¥YcX

YcXx

No implication in these diagrams can be conversed.

3. Proofs. To prove Theorem 1 we need the following two lemmas:

LeEMMA 1. If y is a limit ordinal and y = u@v, then there exist sequences

{Ua}acy and {v},_, such that (i) p,®v, = a for each a <y, (i) U p, = pu
and (iii) () », = ». o
aly

Proof. Let y be any limit ordinal and let y = u®». Let us split
the expansion of y = y,4-...4-y, (into prime components) into segments
pr= yl‘l‘-"‘f"}’k]f B2 = 7k1+1+---+3"k27 ceey Pr= '}’k,._1+1+'--+7n in such
a way that g,+f;+... = u and B,+pB,+... = » or conversely B, B+
+...=9v and B,+pf,+... = u. Without any lost of generality we may
assume that the first possibility occurs.

Now we can define sequences {4}, y {Va}aer as follows:

for a < g, we have y, = a and v, = 0;

for f, < a < fp,+p, we have u, = p, and v, satisfies the equation
fr1®v, = a;

for f,+p, <a < pi+pB:+p; we have y, =g, and u, = p,+&,
where £, satisfies the equation (8,+pf,)®¢&, = a;

for B4 B+ P < a < Bi+ B+ B3+, we have u, =f,+f; and
v, = fy+ &, where £, satisfies the equation (f,- f,+ fs) @&, = a; and
80 on.

This definition gives {f,}._,, {¥a}ae, having desired properties if the
equations of the form

(Bitee.+Bs1)®E = a  for Bit.eoidBey <a < Bi+...4 By

where s < r, always have a solution.

Let gi4...4+fs_y <a<p,+...4+Bs. Then there is a maximal k
such that y,4...4+ 9 < a. But then a < Y1+ ...+ ¥+ yr,, and there
exists #, such that 5, < y;,, and it + vt =a Let o,+...4 0
be the normal expansion of #,. To prove (y;+ ...+ ) ®9. = p1 -+ ..+ v+
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+ 1, 1t is sufficient to show that o; <y, for ¢ =1,2,...,¢. If o; > y;
for some 4, then we would have y;,, > #, = 0; > y;, which is not true,
because yi.; < k.

Let p be a natural number such that g, +...4+8s_; = 1+ 7.+ ...+ 9,
and let & = yp . +...+ v+ oy +03+...+ 0. Then

(Brt.o+Bs 1)@ = (11t .+ )@ (Ppat ..yt ot 4 0)

=nt+y.t+...+ 7+ = a,

hence &, is the desired solution. ,

From the definition of {u,},., and {»},., we see that they have
properties (i), (ii) and (iii), q.e. d.

LemmA 2. If u®v > a, then there are u, and v, such that p,®v, = a,
e < b and v, < .

Proof. We prove this by induction with respect to y = u®» > a.

For y = 0 this is trivial.

Suppose that for some y the conclusion is true. If y+1 = p@v > a,
then either x or » or both are of the form g1, for instance u = g+ 1.

But then y+1 = (f4+1)®v = (f®v)+1 and y = f®» > a. By inductive
supposition there are f, and », having the desired properties. Putting

Ha = P We get p, = f, < B < P+1=p,v, <vand p,®v, = ,®7, = a

For a limit ordinal y the assertion of Lemma 2 follows from Lemma 1,
q. e. d.

Proof of Theorem 1. We prove this by induction with respect
to a.

For a = 0 the theorem holds, because (4 xB)® = AXB =AXB
= A9 % BO,

Suppose that for some « the theorem holds. Then

(AxB)E) = (| A®W X BD = ) (AW x BHD

u@r=a nor=a
= U (4@ xB® L AW BEtY) = | J (4B B AW X Be+D)
y@l’:a ﬂ@l’:ﬂ
= U (AW % B® U AW 5 ge+1)
pudr=a p@®r=a
= (A¥TDx B LAV BEY | (AWxBCH) L A« W)
(s +1)@r=a+1 p®(r+1)=a-+1
= U (A('“) w B® o 4A® X.B(”)) v U (A(’”)XB(") v A® XB(#))
n@r=a+1 uPr=a+1

= U A®WxB®.

por=a+1
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Let y be any limit ordinal number. Suppose that for each a <y
the theorem holds. Then
(AXBM =N AxBP =N U AWxB®"

a<ly a<ly p@r=a

= U {N A% x Bta} — | {4 » BEY
a<y
where the unions are taken over all sequences {#atacy and {¥,},, such
that w,®v, = a for each a <y, g, = U pay v, = U 7.

aly a<ly

From Lemma 1 it follows that

U AW B®

n@r=y
s U {A(@) X BEY: {BaYacys (Yatecy) Ha®Va = a for each a < y}.

In order to prove the converse inclusion let us remark that
a= u,dv, < p,dv,, and hence
y=Ua<por,.
a<ly

For given sequences {y}ocy, {Vatac, satisfying u,®v, = a for each
a < v, by Lemma 2 there are u, » such that g < p,,» <, and p®v = y.

By supposition the sets A® and BYW are closed and hence A®) < A®
and B®” < BY). This means that

AW B* = (J AW xB®
n@v=y
for any sequences {u,}o., and {v,},.. such that u,®v, = a for each a < y.
This completes our inductive proof of Theorem. 1.
Proof of Theorem 2. Let {x, y>eX X Y, where X, Y are dispersed
spaces. Let a = o({x,y)>). Then
@, (XX —(Xx ) = Y X®x YY),
n@r=a
and hence there are y and » such that ze X*), ye Y®) and p®» = a. Hence
n <o) and v < o(y). If we had u < ¢(w), then g = o(2)®o(y) > u®»
— a, because the function @ is strictly increasing. Then (z, y)eX©™ x
x Y < (X x ¥)®, but this is a contradiction, because p > a implies

(XX Y)D—(Xx V)] A (XX V)P =0,

Hence the inequality u = p(x) holds, which gives u = p(x). Simi-
larly » = o(y), and o(x)®o(y) = pu®v = a = o(<®, ¥7), q.e.d.

In order to prove the implications in diagrams of section 2 it is useful
to have the following
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LEMMA 3. If e A®— AD, then xe{w}®.

Proof. Suppose to the contrary that there exists an @ such that
weA® — AW and z ¢{x}®. ¢ AY means that there exists a neighbourhood
U, of @ such that U, ~ A—{r} = 0. Hence U, ~ A— {x} = 0 and also
Uy ~ (A—{z}) = 0. Similarly z ¢{x}® means that there exists a neigh-
bourhood V, of 2 such that V, ~ {2} — {2} = 0. But z¢{z}", so we
can write Vy ~ {#}Y = 0. Let W, = U, ~ V.. Then

Wen (Ao {ah)? = W, ~ (A—{z} v {z}h)?
= (W ~ (A—{2})) © (Ws ~ {2}) =0,

and hence z ¢(A4 v {z})M) 2 AW = A®), which contradicts our supposition
xeA®, q.e. d.

Now we prove the implications of the diagrams (I) and (II).

(1) If A = AV, then AD = A,

Proof. It Ac A®, then AV A =4 = A4 w AV = A® =40 g e.d.

(2) If A = A, then A" = AW,

Proof. A® < (4)® = A®, since A = A. Hence A® = A® _ 4@
=AM q.e. d.

(3) {2} = {2}V if and only if x¢{x}®.

Proof. If {#}" is closed, then {#}® < {#}). But then x¢{z}®,
since x¢{x}V. Conversely, if x¢{z}®, then {2}® c {2}—{a} = {x}'V;
so {#}" is closed, q. e. d.

4) If A {2} = (&}, then 4D —= AW,

zeAd

Proof. If AW is not closed, then A®d A" and therefore A® — AM ¢,
Let #eA®— A®; then, by Lemma 3, z<{z}® and, by (3), {#}") is not
closed. Let us remark that A® —A® < A; this means that xeAd, q.e.d.

If X is a T,-space, then {#}® = 0 for each x¢X, because {&} = {z}.

Hence {z}V is closed for each xeX. Equivalence of A ¢{x}® and A 4O
Ted 4cX

— AW follows from (4) and (3). Equivalence of A {a:}(” _ {m}(l) and
A @¢{z}® is asserted in (3). ZeX

rxeX

(5) If X is a dispersed space, then x ¢ {x}® for each zeX.

Proof. If there is an <X such that ze{z}®, then zeX©® and also
we{r}® < X@@+3) The last inclusion is impossible, because X, by supposi-
tion, is a dispersed space, q. e. d.

(6) If {x}") is closed for each xeX, then X is a Ty-space.

Proof. Let #, 4 be two distinet points of X. Two cases are possible:

(a) ye{x}, i.e. yefx}
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Then U, = X — {#}'") is an open neighbourhood of x such that y¢U,.
(b) y¢{}. o

Then U, = X — {x} is an open neighbourhood of y such that x¢U,.
Hence the space X is a T,-space, q. e. d.

() If X is a T-space, then A® is closed for each A <= X.

Proof. It is sufficient to show that if # ¢ A®, then @ ¢A®. Let 2¢A®.
Then there is a neighbourhood U, of # such that U, ~ AY—{z} = 0.
Two cases may occur:

(a) Uy~ A® =0. Then U, ~A® =0 and hence mg‘A( o A®.

(b) Uy~ AY = {x}, i.e. £eAD,

Two cases may oceur:

1 $¢{m}(2)
Then, by (3), {«}® is closed and also z¢{z}. V, = X—{x}® is
an open ne1ghb0urh00d of  and Vy~ {2} = 0. Let W, = U, ~ V.

Then W, ~ AV—{@} =0, Won AO—{z} =0, W~ (A(l)—"{w})“) = 1
and also W, ~ {#}¥ = 0. Hence

Wsi A® dW r\ A( )— {.’17} {ib'} (1) = Wi~ (A(l)— {.’L‘})(l) uWw e {.CU}(I) = 0

s0 w¢A®.

(by) @e{w}®.

Now we prove that {#}) ¢ AM. If ye{x}", then xeU,—{y} for
each neighbourhood U, of y. But then U,— {2} ~ A # 0, because zeA"
and each neighbourhood of ¥ is also a neighbourhood of x. Since X is
a To-space, there is a neighbourhood V. of  such that y¢V,. Now we
have U,—{x} ~ Vo~ A #0, i.e. —{@t A Ve—{y}n 4 #0, U,—
—{y} ~ A # 0 for each U,. Hence yeA(”

But if {z}V < AD, then {x}® < A® and we{m}(z) c AP, 50 weA®.
This is a contradiction. Hence this case is impossible. Thus (7) is proved,
q. e. d.
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