COLLOQUIUM MATHEMATICUM

VOL. XXV 1972 FASC. 1

CERTAIN SUBDIRECT SUMS OF FINITE PRIME FIELDS

BY

FERENC SZASZ (BUDAPEST)

The fundamental notions used in this paper can be found in Jacobson
[6], Kaplansky [8] and McCoy [12]. All rings considered here will be
associative. For arbitrary subsets B and C of a ring A the product BC
will mean the additive subgroup generated by all elements bc with beB
and ceC. The ring of rational integers will be denoted by I. For
any element a of the ring 4, Ia is the cyclic subgroup generated by a.
Following Kandé [7], a ring A is called strongly regular if aea?d
for any aeA. Some characterizations of strongly regular rings have
been given by Forsythe and McCoy [4], Kovacs [9], Lajos — author
[11] and author [16] (cf. also [17]). In part IT of [11] it is shown
that a ring is strongly regular if and only if its multiplicative semigroup
is a semilattice of groups. Semigroups which are semilattices of groups
(for their definition see Clifford [2]) were characterized also by La-
jos [10].

The Boolean rings in which a? = a holds for any element a of the
ring as well as the discrete direct sums of division rings are important
instances of strongly regular rings. Any strongly regular rings is a sub-
direct sum of division rings [4]. On the other hand, the ring I is a sub-
direct sum of the prime fields I/(p), where p runs over the set of all prime
numbers, but I is not strongly regular. We shall call ring A a restricted
Boolean ring (or an MPR-ring, respectively) if a? = a and ab = ba = a, or b,
or 0 for any a,beA (orif A satisfies the minimum condition on principal
right ideals of A, respectively; MPR-ring was in German denoted as
“MHR-Ring”, cf. [15]). As was shown by Geréikov [5], a ring is a direct
discrete sum of division rings if and only if it is an MPR-ring without
non-zero nilpotent elements. Furthermore, by Satz 2.5 of part II (page
422) of [15], an MPR-ring A has no non-zero nilpotent elements if and
only if any right ideal R, contained in a principal right ideal (a), = Ia+
+ad of A, contains a right unity element of R. Therefore Satz 2.5 of
[15] yields also a characterization of discrete direct sums of division
rings.
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The aim of this paper is to characterize certain strongly regular
subdirect sums of finite prime fields.

THEOREM 1. For a ring A the following two conditions are equivalent:

(I) any additive subgroup S of A is multiplicatively idempotent.

(II) A is a direct sum of ils ideals A, and A,, ie. A = A, 4,
P

where A, i8 a restricted Boolean ring, p runs over the set of all different odd
primes, and either A, ~I1/(p) or A, = 0.

COROLLARY 2. Any ring with condition (I) is a subdirect sum of finite
prime fields.

COROLLARY 3. A ring A without non-zero elements of odd additive
order satisfies condition (I) if and only if it is a restricted Boolean ring.

COROLLARY 4. A ring A without non-zero elements of even additive
order satisfies condition (I) if and only if it is a torsion ring such that any
non-zero p-component A, of A 8 isomorphic to I/(p) (where p +# 2).

Proof of Theorem 1. Assume that 4 is a ring satisfying condition
(I). Since the cyclic group Ia is idempotent for any ac¢A, there exists
a number mel such that ¢ = ma?. It can be noted that ¢ = ma is by

€2 = m2a® =m-ma® =ma = ¢
idempotent. Furthermore, by
a = m2a® = a?-m?aca’Ad for any acd,

A is strongly regular and so it has no non-zero nilpotent elements.

We shall show that any element of A has a square free additive
order, that is, the additive group A7 is elementary (cf. Kaplansky [8]).
Namely, if a = ma® # 0, then a2 # 0. Let p be a prime number which
does not divide the number m. Then by condition (I) there exists a number
nel such that pa = n(pa)?, whence

(m —pn)pa? = pma®—np2a = pa—pa = 0.

This means, by a2 # 0, p # 0 and m * pn, that A" is not torsion
free. If T is the maximal torsion ideal of 4, then the torsion free ring
AT also satisfies condition (I); consequently, we have A/T = 0 and
T = A. Let now, for an arbitrary prime number p, 4, be a p-component
of A. Then 4} = 4, and (p4,)* = pA, imply pA, = p*A,. Hence pA;
is a divisible abelian group, which is, by ' = A, a direct sum of Priiferian
quasicyclic groups C(p®). Obviously, any C(p®) admits only trivial
multiplication upon itself (i.e., zy = 0 for any x, y<C(p®)), contrary to
condition (I). Consequently, for any p, p4, = 0 (cf. I. Kaplansky [8]).

Since 4 has no non-zero nilpotent elements, any idempotent belongs,
according to a result of Forsythe and McCoy [4], to the centre C of A.
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Therefore
ma = e¢eC for a = ma2eA.

Consequently, a?> = a and b2 = b imply ab = ba.

We shall show that if p is an odd prime number, then 4, # 0 implies
A, =~ I/(p). For assume the existence of non-zero elements ¢ and b with
IanIb = 0. Then a and b can be chosen, by condition (I), such that
a? =a and b2 =b. Since 8 = Ia+Ib = §* is a subring, we have ab
=ba = ka+1b with k,lel. Now IanIb =0, a2b = ab and ab2 = ab yield

K=k, P=1 and K =0 (modp);

consequently, ab = 0, or a, or b.
If ab = ba = 0, then there exists a number seI such that

a+2b = s(a+2b)? = sa+4sb,
whence, by IanIb = 0,
g§=1, 4s=2 and 4=2 (modp),

and so we get p =2 in a contradiction with the assumption p # 2.
Similarly, if ab = ba = a, then there exists a number ¢teI such that

a—2b = t(a—2b)? = t(—3a-+4b)
whence, by IanIb =0,
3t=-1, 44=-2, t=-1 and -—3= —1 (modp),

and so we get the same contradiction p ="2 with the assumption p # 2.
The case IanIb = 0, ab = ba = b is similarly impossible.

Therefore we have 4, ~ I/(p) for 4, # 0 and p +# 2.

It is now sufficient to prove that any ring A with condition (I) and
with an additive elementary 2-group is a restricted Boolean ring. In
fact, condition (I) implies a® = a for any aeA4A and

ab = baela-+1Ib
for any @ and b of A.
Equality ab = a+b cannot occur for a # 0. Indeed, assuming
ab = a-+b, the equations

ab = a(ab) = a(a+b) =a+ab =a+a+b =0>

would yield the contradiction ¢ = 0 with the assumption a # 0. But
a® =a and ab = ba # a+b for any a,beA mean that A = A, is a res-
tricted Boolean ring.

Hence the implication (I) => (II) holds.

Conversely, assume that A is a ring with condition (II). Let S be
an arbitrary additive subgroup of A. According to condition (II), S has
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an additive direct decomposition § = 8,+>'S,, where p is an odd prime
p

number. Congequently, §,8, = 8,8, =0 for p # q. Since, for any
non-zero p-component 8,, S, =~ I/(p), there must be §; = §,, whence

also
(X&) =28,
i/

Since a? = a for any aeA,, we infer, by the definition of the product
BC of subsets B and C of 4, that the 2-component S, of S satisfies
82 = §,. On the other hand, also 85 = 8, holds, because the 2-component
A, of A is a restricted Boolean ring. Therefore 8; = §,, whence §* = §.

Consequently, we have also the implication (II) = (I), which com-
pletes the proof.

Examples 5. (1) Let A be the algebra over the field of two elements,
generated by the elements a, b and ¢ with the table of multiplication

Ia blcl

blo|b| e

c| ¢ 0|0

Then A is a Boolean ring having eight elements such that the sub-
group S8 = Ia+Ic is an idempotent subring, but the subgroup 7' = Ia+
+Jb, satisfying T* = A # T, is not a subring and is not idempotent.
Therefore A is a Boolean (but.not restricted Boolean) ring without con-

dition (I).
(2) Let A be the complete direct sum of the fields K, , of two ele-
ments, n = 1, 2, 3, ... Furthermore, let a, be the infinite vector, treated

as an element in A, which has 0 in the first n» components and 1 elsewhere.
Let b, denote the product a,a,,...,a, of A. Then A is a (restricted)
Boolean ring, which is also strongly regular, but the infinite proper des-
cending chain of principal ideals

(b1) 2 (b2) 2 (b5) > ...

shows that A is not an MPR-ring. Obviously, b, is the unity element
of the ideal (b,). Let C, be an ideal of A such that the direct decompo-
sition

(bn—l) = (bn) @Gn

holds for any » > 2. Construct the direct sum D = 2 @ C,. The ideal D
n>2 '

of A4 lies in the principal ideal (b;) of the (commutative) ring A of cardi-
nality continuum, and the ring D does not contain unity element (cf.
Satz 2.5 of part II of [15]).
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(3) Let A be the direct sum of two fields of two elements, that is,
A = Ia+1Ib with

24 —ab —ba —a*—a = b2—b = 0.

Then A satisfies condition (I). Consequently, A is a restricted Boolean
ring. The subgroup K = I(a-+b) is a subring, but K is neither an ideal,
nor a (ring theoretical) direct summand of A.

(4) Let A be the direct sum of a field B = Ib of order two and of
a ring C = I¢ of order two with ¢2 = 0. Then A does not satisfy condition
(I), any subring is a (ring-theoretical) direct summand of A4, but the sub-
-group I(b+e¢) is not a two-sided ideal of A.

(b) Let A be the ring Ia with a? = 0. Then A is an infinite cyclic
ring in which any additive subgroup is a twosided ideal with trivial
multiplication, A does not satisfy condition (I), and 24 is not a direct
summand of A.

Remarks 6. (1) Let ¢, denote the class of all rings with condition
(I). In the author’s paper [14] there is determined the class C, of all rings
such that any subring is a (ringtheoretical) direct summand. Furthermore,
Rédei [13] has determined the class O3 of all rings such that any addi-
tive subgroup is a two-sided ideal. These latter rings are called full ideal
rings. Now, example (3) shows that C; &£ C, and C,; & C;. Furthermore,
example (4) yields C, £ O, and C, £ C,. Finally, by example (5), we have
also C3 & €, and C; § C,. Consequently, C,,C; and C, are different
classes of rings.

(2) In the proof of the implication (I) =- (II), the theorem of For-
sythe and McCoy [4], according to which any regular ring without non-
-zero nilpotent elements is a subdirect sum of division rings, was not
used.

(3) We have seen that a = ma? for any a¢A, where m is an integer
and 4 is a ring with condition (I). This means that ae Ia? for any aeAd.
Let C(a) denote the subgroup Ia?. Condition (I) implies the C-regularity
aeC(a) for any aeA, which satisfies C(ap) = (C(a))p for any (ring-the-
oretical) homomorphism ¢ of A. The axiom P; of Brown and McCoy
[1], p. 302, holds, but the axiom P, generally fails to be satisfied for
C(a). On the other hand, this C(a) is a modified form of #(a) of example 4
of [1]; p. 308, for which axioms P, and P, are already satisfied in any
ring A, treated as a (¥, 2)-group.

(4) The upper radical R (cf. Divinsky [3]), defined by the class C,
of all rings with condition (I) has the property that any homomorphic
image of any R-semisimple ring is again R-semisimple.

(5) It would be interesting to investigate the question, whether any
finitely generated additive subgroup of any ring with condition (I) is,
or is not, a direct sum of finite prime fields. (P 782)
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