COLLOQUIUM MATHEMATICUM

VOL. XIX 1968 FASC 1.

SOME MEASURES
DETERMINED BY MAPPINGS OF THE CANTOR SET

BY

R. KAUFMAN (URBANA, ILL.)

0. In this note we present a function-space technique for construc-
ting measures on the real line. These measures are just the distribution
functions of functions on the Cantor set, with respect to the conventional
product measure. We obtain, first of all, measures 4 all of whose powers
are mutually singular; naturally we insist that A(H) = A(— E). Then
we derive some of the results of Hewitt and Kakutani [2]. In several
places we have proved that a certain phenomenon occurs on a dense
Gs-set, rather than proving only the existence.

1. Let X denote the Cantor set, and its elements be denoted by
&= (X, Xy, Xg,y...)y, ¥ =0,1 (1 <i<o0). With component-wise ad-
dition modulo 2, X is a compact topological group, whose Haar measure
is denoted by u. For a sequence b,, by, by, ... of positive numbers with
finite sum there is defined the continuous function

(p(a,‘) = Zbimi, reX.
1

Now write A(B) = u(p~'(B)) for every Borel subset of the real
numbers; sometimes we write 4, for A.

TueorEM 1. Suppose that r and s are integers and s >r>=1. If
limsupb;,[/bi < T, where

S T = (T"}‘S)hl,

then the r-fold convolution, A", of A,, is singular to every translate of °.

Proof. If the first m of the numbers b, b,, ... are replaced by 0,
the measure A is replaced by 4’, say, but it is clear that 1 = 1" *¢ for
some measure ¢ with finite support. Thus we can suppose at the start
that b;,/b; < T (1 <4< oo). The last inequality is intended to justify
some elementary arguments from p;‘ﬂﬁi‘ﬁ‘l theory, and we write so

?
(3
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as to exploit this. 2° is supported in the set of numbers of the form Zb X;,
where 0 < X; <<s (1 <<% < oo). Inasmuch as

by>s Yb; for each j>1,
7+1
the multipliers X,, X,, X;,... are well-defined continuous functions of
the sum. 1° is determined by the condition that the X’s are jointly inde-
pendent, and assume each integral value %k in [0, s] with probability

2“5(;). The measure A" is supported in the set of numbers of the form

DY, 0<Y;<r (1<i< oo). It remains to prove that any translate
1

of this latter set has A* measure 0; let it be translated by a real number e.

For each integer N > 1, consider those N-tuples (X, ..., Xy) which
can be associated to an element in the given translate, as well as in the
support of 4°; we claim that at most »™ vectors can be so realized. Sup-
pose, indeed, that

DbXi=c+ Ybi¥; and  Y0X;=e+ Y0,

where (X, ..., Xy) # (X}, ..., Xy). To establish our claim it is enough
to deduce that then (Y,,. YN) # (Yy,..., Yy). In the opposite case
let M be the first index at Whmh X; #+ X, so we have

bar < bag | Xpg— Xyl <r Y bibs Y bi<by(r+8) 3 T'< by,
N+1 M+1 1
a contradiction.

Now there are (s—1)Y =" N-tuples (X,,..., Xy) in which no
coordinate is 0, and these (s—1)" choices have the maximum total pro-
bability for any collection of (s—1)¥ N-tuples; this probability is
(1—2"%". This proves Theorem 1.

Remark. Let a = }b;, so that for each Borel set B, ¢ '(—B)
1

= —¢ '(a+B), whence A(—B) = A(a--B). Writing A~(B) = 1(— B)
we see that Theorem 1 holds equally for A4 4~.

COROLLARY. If limb; ,/b; = 0, distinct convolution powers of A+ A~
are singular.

This is not surprising in view ot [1], 3.8, since the support of the
measure A is close to being independent. It is possible nevertheless to
replace the precipitously decreasing sequence b,, b,, by, ... by one which
decreases irregularly but not too quickly. This requires some technical
remarks.
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LremMMA 2. Let P(R) be the space of Borel probability measures on
the real mumbers R, in ilts w* (dual-space) topology. Then the subset
8 = {(0, 0)eP XP: p*0} has type G5 in P xXP.

Proof. For every t¢[0, 2), |[o—o| >t if and only if there is a con-
tinuous function f, having compact support in R, such that [<o—a, ]
> t|/fl|. The union for all f is an open subset of P x P; S is the intersection
of these sets, for ¢ rational in [0, 2).

We introduce now a Cantor set ¢ whose elements are written
§ = (&1, &2y &5, ...), & = 0,1 (1 <4 < oo). Making use of a fixed sequence
byy by, b, ... of positive numbers with a finite sum, each & defines a con-
tinuous function on the space X according to the formula

§(x) = j Eiw;by.
1

TurorEM 3. For each & in C let 2 = po & '. Then the subset of ¢
{£€0: A+ A7) L (A4 A7) for s >r =1} is a dense G5 in C.

Proof. It is clear that the mappings & - 27°(A.+i7)%, s>1, are
continuous on € into P(R), so that the subset in question has type G
in C. It contains a dense subset, for example all & for which & = 0 outside
a finite set, except for a remainder which is sufficiently lacunary.
Theorem 3 is thus proved, in view of the corollary.

An interesting special case is based upon the fact that the sequences
in ¢ which contain infinitely many pairs of neighboring 1°s form a dense

(is, hence intersect the set constructed in Theorem 3. Let now Dby < oo
1

but bi.,/b; 1. For a sequence & in ¢ which has infinitely many pairs
of neighboring 1’s, the non-zero members of the sequence E1Dys Eallisy oo
say by, have the property that

*?

limsupb;,,/b; = 1.
It is natural to ask whether the dense subset of (' constructed in
Theorem 3 can contain elements & for which
N
.1
lim ¥ & = L.
1
In the following paragraphs we show that this is indeed possible
(and, in a sense, typical) for a rather special sequence by, by, by, ...

THEOREM 1. Let by, by, by, ... be non-increasing powers of }. Sup-
pose there is a sequence of integers

0 =k(0)< k(1)< ...< k(n) < k(n+1)
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such that
0 o0
Yottt — oo, (r-+8) D bi<biy, m=1,2,3,..
ol k(n)+1

Then %, is singular to every translate of hy. (Here s, v, and i, are as
in Theorem 1.)

Proof. 2° is supported by numbers of the form

th-xi, 0< X;<s (1<i< oo).
1

Writing
k(N)
Yy= Z b; Xi’
1
we find that two distinct values in the range of Yy differ by >(r+s) > b X,

k(N)+1
[s¢]
so that the functions Yy are uniquely determined by the sum Z'biXi.
' 1

The same is then true for the sums Z, =Y,, Z, = Y,—Y,,..., 2y
—= ¥Yy—Yx_;. For each N >1 there are (14 )™ possible values for
the n-tuple (Z,...,Zy), each occurring with 2°-probability at least
2-%M™  Ag in Theorem 1, we find, from this, that the 2° probability of
any set

o0

{c—l—ZbiXi, 0 \<\X1-\<\r}
is at most

J] (1 —zeten-ievny,
1

Since this diverges to 0, the proof is achieved.
Let €, be the subset of ¢ of sequences & such that

N
. 1
Iim — g =1,

N—oo
- 1

O, is a set of the first category in itself, so we introduce a stronger

topology via the metric
N
L e
Nt o

(', is complete in the topology of the metric d.
¥

d(&, &) = sup

1<N<oo

}
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THEOREM 3*. If by, by, by, ... is a sequence of sirictly decreasing
powers of %, then the set

{£eCy: (A4 A7) L (Ae+ A7) for s >r>1}

18 a dense Gy in O.

Proof. By Theorem 3% (A:+47)° | (A+4)" if it contains blocks
of the form A,B,A,, where 4, and A, are strings of at least 1 log2s
0’s, B, is a block of length < logn/slog2 which contains at least a single
digit 1. In fact, if we suppress the 0’s from the sequence &,b,, &,b,, ...,
we obtain a sequence of decreasing powers of 1 that is allowed by The-
orem 1%, Any sequence in €, can be transformed into a sequence of the
foregoing sort by introducing (when necessary) the blocks of 0’s. It is
plain that this can be done so that the transformed sequence has arbit-
rarily small d-distance from the given one. The theorem is thereby proved.

2. The functional notation
E(x) = Zfibi%
1

is retained, and the numbers b,, b,, b;, ... are required to be rational.
This condition and the construction below should be compared with
[2], (4.3) and (4.4). We denote by A the set of sequences & in € with the
property that for each complex number z of modulus < 1 there is a se-
quence m,, My, My, ... of integers for which

lim [ exp2rimé(a)p(da) = 2 [ () pu(dar)
koo X

for each continuous character y of X.

The application of this, set forth in [2], is as follows. For each complex
number # of modulus < 1, there is a sequence of continuous characters o,
such that

lim [ o, ()£ (1) 2:(dt) = = [ f(1) 2 (d)

N—-00

for each bounded Borel function f on (—oo, c0).

Remark. We can describe a sequence O(k, 1) of open subsets of C
whose intersection is exactly A. Let yx,, %2, %3, ... be the non-trivial
continuous characters of X, V,, V,, V4, ... a sequence of open subsets
of the complex unit disk which forms a basis for its topology.

Say that £e0(k,1) if there is some integer m such that

f exp2nim & () u(dx)eVy
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and
’fexp2nim§($)xj(w),u(dw) <@y

for 1<j<l (1<k,l<oo) It is evident that 4 = (MO(k, 1), and the
converse is proved by Cantor’s diagonal process.

TECHNICAL LEMMA. Letc,, ..., ¢, be rational numbers, and d, d,, d;, ...
a sequence of positive rational numbers convergent to 0. For each & >0,

and each integer s > 1, there is a subset of distinct numbers dy, ..., ds among
the d’s with the following property.
For any real numbers a,, ..., as, there is an integer m such that
me; = 1(modulol), 1<i<r,

Imd; — a;] < e(modulol), 1<i<r.

Proof. If the numbers d; are expressed in lowest terms, d; = p;/q;
with p; and ¢; relatively prime, then ¢; — co because d; — 0. Thus we
can choose d, so that its denominator is > ¢! {the least common mul-
tiple of the denominators of the ¢’s} and each dj to have denominator
> ¢ '+ {the least common multiple of all previous denominators}. Then
there exist integers m,, ..., my; such that

m;¢; = 0(modulol), 1<i<r,

m;d; = 0(modulol), j< 1,

1

and the denominator, in lowest terms, of m;d; is > ¢ '. We can choose

inductively integers #,, ..., #s such that
(O +nz7n) —a;] < e.
Then
(gt +. ..+ ngmg)d; — a;] < e(modulol).
THEOREM 4. A is dense in C.

Proof. We must prove that each of the open sets described in the
previous remark is dense. Let &, ..., &, be arbitrarily assigned elements
of {0,1} and let us suppose for simplicity that all the characters in
question have the form

& — expri(e,,+...+ eay), ge{0, 1}, 1 < j<h.
Then

f 1 (%) exp 2rimé (i) u (dar)
X

= ”{ —expm[ak—|—2mbk§k]} ”{ lepon-zmbkfk}

h+1
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Let ay, ..., a; be arbitrary real numbers, with s also arbitrary, and
in the technical lemma, take b,, ..., b, for the ¢’s and brivy by gy ... for
the d’s. When dj, ..., d; have been chosen, dependent only upon s and e,
we choose m as specified in the lemma. Then set &, = 1 for k > h exactly
when b; is one of the d* selected. The first [] vanishes unless e, = ..
= ¢, = 0, and in that case the integral is

T(1 1 ,
” E—i—geprmmbk .

%k
the product [[ being taken for the s distinet %’s for which b is chosen
as a d*. This product can be made arbitrarily close to any product

Tl 1 _
H E——I—Eexpf&maj,

i=1

and hence ([2], (4.1)), by increasing s, arbitrarily close to any number
in the unit disk. The proof is complete.

Remark. Kronecker’s Theorem on simultaneous approximation
(modulo 1) can be used to obtain a variant of Theorem 4 in the case that
the numbers b,, by, by, ... are irrational and linearly independent modulo
the integers. Further variants can be obtained by adapting the technical
lemma to sequences by, b,, by, ... of mixed types.
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