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Let X be a complete linear metric space over the complex numbers.
We say that a linear operator T' is compact if there is a neighborhood U

of the origin such that the set TU is compact (see [6] and [11]).

We say that an element xzeX is an eigenvector if there is a number
A # 0, called an eigenvalue, such that Tw = iwx.

Let X be a Banach space. We can introduce a norm for the oper-
ator T in the usual manner. It follows from the general theory of Banach
algebras (see [4], for example) that the limit lim (||7" )" always exists.

Obviously if the operator T has an eigenvector, then this limit is dif-
ferent from zero. On the other hand, if this limit is different from zero,
then the general theory of Banach algebras implies that there is a number
A + 0 such that the operator 7— I is not invertible. Hence from Riesz’s
theory of compact operators (see [7] and [8]) it follows that 2 is an eigen-
value and there is an eigenvector .

Now let X be a locally bounded space. Using the results of papers
[1] and [9] we can introduce a p-homogeneous (!) norm in the space X
in such a way that the norm determines a topology of X. The norm of
the operator T can be defined in the same way as in the case of Banach
spaces: [T = sup [T ([lof] <1).

Using the theory of locally bounded algebras founded and developed
by W. Zelazko (see [12]), and the general Riesz theory (see [11]), we
are able to carry over the argument from the Banach case to the locally
bounded case and so we obtain the result that an eigenvector exists if
and only if Lim(|7"])"" 0.

In the general case the theory of metric algebras cannot be used.
Here we formulate a sufficient condition for the existence of eigenvec-
tors.

(1) The norm is called p-homogeneous (0 < p < 1) if [ffz| = 1£|P ||| .
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THEOREM. Let X be a complete linear metric space with metrie o(z,y)
(not necessarily translation invariant). Let T be a compact linear operator
acting wn X. Assume moreover that T is a contraction, that is, o(Tx, Ty)
< o(w,y). If there is a compact set E that is invariant under T (that 18,
TE < E) and does not contain 0, then the operator T has an eigenvector,

The proof of this theorem is based on the following proposition
proved by Freudenthal and Hurewicz [3]:

ProprosITION. Let K be a compact metric space. Let T be a continuous
Junction mapping K onto itself. If T is a contraction, then T is an isometry,
that is, o(Tw,Ty) = o(=,y).

Proof of the theorem. Let ¥ be an invariant compact set that
does not contain zero. Let K, = (MT"E. The set F, is a non-empty
compact set and, moreover, T' transforms K, onto itself. Let

K = | AE,.
211
The set K is also compact and T transforms K onto itself. Now let
K" = K+ K+...+ K (n-fold vector sum). Each of the sets K" is compact
and for each n =1,2,... the operator T transforms K" onto itself.
Hence, by the above proposition, 7 is an isometry on each of the sets K",
Therefore it is also an isometry on the subspace

X, = K"

(the closed subspace spanned by the set F,).

But T is a compact operator and hence (see [2]) X, is finite dimen-
sional. Since 7T transforms X, onto itself, 7 must have an eigenvector,
q. e. d.
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