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A CONJUGACY THEOREM FOR SUBGROUPS OF GL,
CONTAINING THE GROUP OF DIAGONAL MATRICES

BY

N. A. VAVILOV (LENINGRAD)

Let A be an associative ring with 1, G = GL(n, A) be the general linear
group of degree n over A, and let D = D(n, A) be its subgroup of diagonal
matrices. For a semilocal ring A in [2], [4], and [7] a description of
subgroups of G containing D was obtained. In this paper, for a matrix local
ring, i.e., a ring A whose factor ring modulo the Jacobson radical J is simple
artinian, we find out when two such subgroups are conjugated. Namely, we
prove the following result which was announced without proof in [8]:

THEOREM. Let A be a matrix local ring such that A/J is isomorphic
neither to one of finite fields F,, with q <35, nor to the full matrix ring
M (2, F,) of degree 2 over the field of 2 elements. Then if two subgroups F and
H of the general linear group G = GL(n, A) containing the group D = D(n, A)
of diagonal matrices are conjugated in G, then they are conjugated by a
monomial matrix. More precisely, if xFx~' = H for some xeG, then x = yn,
where m is a monomial and ye H.

Let us remind (see, e.g., [S]) that a subgroup H of a group G is called
pronormal if for every xeG the subgroups H and xHx~! are conjugated in
the subgroup (H, xHx~ ') generated by them. Our theorem implies that
D(n, A) is pronormal in GL(n, A).

Proof. We will divide the proof into several steps.

1° Let us first introduce necessary definitions and notation. A matrix ¢
=(0;)), 1 <i, j < n, of two-sided ideals o;; of A is called a net if the relation
0., 0,; S0;; holds for all i,j,r=1,...,n and a D-net if moreover ¢; = A
(1 <i<n)(see [1], [2], and [4]). To any net o there corresponds a subring
M (o) of the full matrix ring M(n, A) of degree n over A consisting of
matrices a = (a;;) such that g;;e o;; for all i,j=1, ..., n. The greatest sub-
group of G = GL(n, A) contained in the multiplicative semigroup e+ M (o),
where e is the identity matrix, will be called the net subgroup corresponding to
the net ¢ and denoted by G(o). For a semilocal ring we have G(o) =G n
(e+ M (o)) (see [4], Theorem 1). Let N(o) be the normalizer of G(o) in G.
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2° Our first statement is that for a semilocal ring 4 such that neither F,
(g <5) nor M(2, F,) appear as direct summands in the decomposition of
A/J into the direct sum of simple artinian rings (and, in particular, under
conditions of the Theorem) for every subgroup H of G containing D there
exists a unique D-net ¢ such that

G(o) < H< N(o)

holds. This is a slight generalisation of Theorem 1 in [7] which in turn is a
slight generalisation of Theorem 4 in [4]. The proof of this statement in full
details will appear in the “Vestnik of the Leningrad University”.

3° In view of 2° we have odly to prove that if o, T are two D-nets over a
matrix local ring A, and F, H are two subgroups of G such that
G(o) < F< N(o) and G(t) < H< N(1), then if xFx~! = H for some xeG,
then x = yn, where n is a monomial and ye G(r). We shall prove this
actually when A/J is not isomorphic to F, or Fj.

4° For net subgroups this conjugacy theorem is known. Namely, from
Theorem 6 in [4] and Theorem 1 in [3] it follows that if A/J is distinct from
F,, then if xG () x~! = G(z) for some xe G, then x = yn with a monomial =
and ye G(1). Of course, for simple artinian rings it is a very particular case of
the general theorem on groups with normal root data (see [6]).

In fact, in Section 6 of [4] a little bit more precise result is proved of
which a conjugacy criterion for net subgroups is a mere consequence. Let A
be a simple artinian ring distinct from F,. If xDx~! < G(o) for some D-net ¢
and some xe G, then x = yn, where ye G(g) and n is a monomial (see also
Proposition 2.14 of [6]).

5° Let us suppose first that A is simple artinian. We begin our study
with irreducible subgroups. From 4° it follows that for A # F, any subgroup
H, G(6) < H < N(0), is obtained from G(s) by adding some monomial
matrices. Let us call a subgroup H of G = GL(n, A), where A=M(m, T), T
being a skew field, irreducible if it is not contained in any proper net
subgroup of G. Of course, this concept of irreducibility differs from irreduc-
ibility of H as a subgroup of GL(nm, T), but for subgroups containing
D(n, A) these two notions do coincide. It is readily seen that if H is an
irreducible subgroup of G = GL(n, A) such that G(o6) < H < N(o) for some
D-net ¢ and A # F,, then up to conjugacy with a monomial matrix G (o)
= D(q, M(n/q, A)) for some g|n, and thus

D(q, M(n/q, A)) < H < N(q, M(n/q, 7)),

where N(n, A) is as usual the group of monomial matrices of degree n
over A.

6° Let us check the following easy fact:

Let A = M(m, T) be a simple artinian ring distinct from F,, F; and
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a, be A\ |0}. Then there exist at least two distinct units ¢,, &; € A* such that
a(g;—1)b # 0.

Let a have a non-zero entry in the column with index p and let b have a
non-zero entry in the row with index q. Then ale,, b # 0 for any Ae T*. Now
Ae,, = (e+Ae,,)—e, where e+ Ae,, is invertible when p # g or p=q and 4 #
—1. Thus for T# F,, F; we obtain the desired ¢&'s by varying A.

Let now T= F,. If the matrix a has a non-zero column with index p
and b has a non-zero row with index g # p, then the previous argument
works. Thus it remains only the case where a has a unique non-zero column
and b has a unique non-zero row, namely those with index p. Then matrices
¢, =e+e,, and &, = e+e,,+e,, where g # p, are precisely what we want.

Thus only the case T = F, remains. If there are three pairwise different
indices p, g, r such that either a has non-zero columns with indices p and ¢
and b has a non-zero row with index r, or a has a non-zero column with
index p and b has non-zero rows with indices g and r, then the previous
argument works. Therefore, we may suppose that a has at most two non-
zero columns and b has at most two non-zero rows, namely those with
indices p and g. Thus the problem is reduced to the case of a, be M (2, F,).
If either of elements a, b is invertible, then it is obvious that such €’s do exist.
If now neither of a, b is invertible, then multiplying b from the right and a
from the left by invertible matrices and, moreover, b from the left by some
invertible matrix and a from the right by the inverse of this matrix, we may
suppose that b = e;, and a = e,,, e, or e;, +e;,. In all these cases it is easy
to check directly that the desired ¢'s do exist.

7° In view of 5° the case of irreducible subgroups over simple artinian
rings (possibly considering M (n/q, A) for some g|n in place of A) is solved by
the following statement:

Let A be a simple artinian ring distinct from F, and F5. Then if
xD(n, A)x~! < N(n, A) for some xeGL(n, A), then xe N (n, A).

Let x be a non-monomial matrix. This means that it has at least two
non-zero entries in some column, say in the r-th one. Let these entries be x,,
and x,,, q # p. The inverse x™' = (x{;) has at least one non-zero entry in the

qr>
r-th row, say x, # 0. Now take

y=x(e+—1e,)x ' =e+) x,(e—1)x);¢;

ij

for ee A*. At least one of the indices p, g is distinct from s, say p. Then let us
look at the entries of y in positions (p, s) and (s, s). If either of elements x,,,
x,s is not invertible, then

Vs = 1+ X, (e—1) X, # 0 for any ee A*,

and if both x,, x,;€ A*, then only one value of ¢, namely 1—(x/,x,)"", is
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prohibited. Now by 6° we may choose such an ¢ subject to the condition
Vps = Xp(e—1) x; # 0.

Thus the matrix y is not monomial since it has at least two non-zero
elements in the s-th column.

8° To complete the proof of the Theorem for simple artinian rings we
need the following fact. Let ¢ be a D-net of degree n over a simple artinian
ring A and let v=(n,,..., n) be a partition of n. We may write ¢ in the
block form ¢ = (c*'), where ¢* is a matrix of ideals having n, rows and n,
columns. We shall say that o is a block triangular net of type v if every block
o** consists only of unit ideals and every block ¢*!, k > I, consists only of
zero ideals. Theorem 4 of [2] states that every D-net o over a simple ring is
similar to a block triangular D-net, that is, there exists a permutation ne S,
such that the net ¢" =(o,,;) is block triangular with respect to some
partition v =(n,, ..., n) and the summands n,, ..., n, are uniquely deter-
mined up to their order.

Let ¢ be a block triangular D-net of type v =(n,, ..., n,) and G(o) the
corresponding net subgroup. For every k =1, ..., t there is a natural projec-
tion ¢, of G(6) on GL(n,, A), assigning to each matrix ae G (o) its block a**.

9° Theorem 1 of [1] says that if a ring A is generated by its units and
there exists a unit ¢e A* such that é—1 is also a unit, then the group D
= D(n, A) is abnormal in the group B = B(n, A) of upper triangular matri-
ces, i.e., every be B belongs to the subgroup (D, bDb~'> generated by D and
bDb~ 1.

10° Now we may complete the proof of the Theorem for simple artinian
rings. Set G(6) K FE<N(o), G@®) SH< N(t) and xFx~ ! =H for some
x e G. There exists a unique smallest D-net w such that H < G(w). Therefore,
xFx~!, and hence xDx~! is contained in G(w), and thus by 4° we have x
= ym, for some ye G(w) and some permutation matrix n,. Set F, = n, Fny!.
Then yF,y ! = H with ye G(w), and thus F, < G(w). Conjugating with a
monomial matrix we may suppose in view of 8 that o has a block
triangular form with respect to some partition v = (n,, ..., n,). Now we shall

regard all other objects, as the matrix y, nets o' and 7, etc, as block-

triangular with respect to this partition. For every s=1,...,t we get
Y0, (F)(y*)™" = o,(H).

The group ¢,(H) is irreducible (else G(w) would not be the smallest net
subgroup containing H). Thus ¢,(F,) is also irreducible and by 7° we get y*
= a* 3, where a*e G(t*) and = is a permutation matrix of degree n,. Now
set

a =diag(a'!,...,a") and =, =diag(n}, ..., ).



SUBGROUPS OF GL, 13

Then a™ !y = brn,, where be_G(a)) is such that b* = e for every s =1, ..., t.
Now bDb~! < H and the matrix b is upper triangular. By 9° we get

be (D, bDb™'> < G(1)

and the proof of the Theorem for simple artinian rings is completed since x
= (ab)(n, my), where abe G(n) and n,m; is a permutation matrix.

11° Let now A be a matrix local ring, and J its Jacobson radical. For
any net ¢ = (g;;) there correspond a net ¢* =(0;;+J) over A and a net ¢
= ((0;;+J)/J) over A=4/J. Let now G(6) < F<N(9), G@)<H<KN(?)
and xFx~! = H for some xeG = GL(n, A). Denote by G, the principal
congruence subgroup modulo J, that is, the group of all matrices congruent
to e modulo J. Then for F = FG,/G, and H = HG,/G, the following
conditions are satisfied: G(6) < F < N(3), G(f) < HS N(7), and xFx!
= H, where X is the image of xe G with respect to the natural projection G
— G = GL(n, A). Now the ring A is simple artinian and we have just proved
that this implies that X = yn for some ye G(tr) and some permutation matrix
n. In particular, XG(6)X~ ! = G(7). Thus xG(o)x~! < G(t¥).

We have also inclusions xG(6)x ! < xFx !'=H < N(1), and thus
xG(6) x~! is contained in the intersection of G(t*) and N(t). But by Lemma
8 of [3] this intersection equals G(zr). Thus xG(6)x~! < G(r). But starting
with x"!Hx=F we could in the same manner prove that
x !'G(1)x < G(6). Thus xG(o)x~! = G(r). Now by 4° this implies that x
= yn, where yeG(tr) and =n is a permutation matrix. The proof of our
Theorem is now complete.

Remarks. (a) For the fields F, and F, the assertion of the Theorem is
actually false. In the case of F, one should look at the matrices e+e,;, and
e;2+e;; in GL(2, F,). In the case of F; we put c =e;,+e;,+e5; —e,;.
Then for D = D(2, F3) we have

¢De™! ={te, t(e;;+e,y,)).

Thus D and cDc™! generate the group N = N (2, F,) of monomial matrices,
but they are obviously not conjugated in N.

(b) It is worth mentioning that in the case of infinite fields the Theorem
is an immediate consequence of 4°. In fact, G(o)’s may be characterised as
the only Zariski-connected subgroups of G containing D (all such subgroups
are algebraic). Thus if two subgroups F and H containing D are conjugated
by xeG, then xF°x~! = H° where F® and H® are the connected compo-
nents of e in F and H, respectively. But F° and H° are of the forms G (¢) and
G(t) for some D-nets ¢ and t and we may apply 4°.

(c) The Theorem is no more valid for general semilocal rings. Of course,
it follows immediately that D is pronormal in G for any ring which is the
direct sum of matrix local rings satisfying the conditions of the Theorem. But
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for any ring not in this class this is false. Let A be an indecomposable ring
other than a matrix local one. If there exists a unit ee A* such that ¢—1¢e A*,
then N/D = §,, but

N¢g(DG,)/DGy; =S, x...xS,,

where the number of S,’s equals the number of summands in the decomposi-
tion of A/J into the direct sum of simple artinian rings. Thus D cannot be
pronormal. It is even easier to give such counterexamples when there does
not exist such a unit e.

The author is grateful to Professor Z. I. Borewicz for numerous discus-
sions. Thanks should be also given to the colleagues at the Wroctaw
University for their hospitality.
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