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AND THEIR APPLICATIONS
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1. Introduction. Let 4 be a set of functions g(x), defined on the set of
real numbers R and satisfying the following conditions:

g(x) is nonnegative, even, and nondecreasing on [0, o),

x/g(x) is defined for all xe R and nondecreasing on [0, o).

We consider a sequence {X,, k > 1} of independent random variables
with EX, =0, EX? = 67, EX?g°(X,) < o, k > 1, where s > 0 is some fixed
number.

Let

Sa= ) Xi, B}=) o}, F,()=P[S,<!B,],
k=1 k=1

and
L.(9) = [gl E[Xi-g°(X)1)/B: g*(B,).

The aim of this note is to give some nonuniform rates of convergence to
normality. The results obtained strengthen the analogous ones of Bikelis [3],
Michel [9], Maejima [8] as well as of Ghosh and Dasgupta [6].

2. Nonuniform central limit bounds. We begin with a lemma, which
generalizes Lemma 2 of [10], p. 139.

LEmMMA. Let Xy, X5, ..., X,; Y}, Ys, ..., Y, be random variables and let
915925 -+ Gns f15S25 ---, f,, be nonnegative measurable functions such that for
all s=20, r=>0and k=1,2, ..., n,

E [gi (X)) i (%)] < 0.
Then for every s <s' we have

L9, /) <[L; (9. NI,
where

Lig.f) = z E [4} (X, f:(li)]/él E [4} (X,)].
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Proof. First, let us note that the function

h(s) =log Y E[gr(X) fF(X)], s>0,
k=1

is convex from below. Indeed, by Holder’s inequality applied twice, for s < s’
we obtain

(L B A (R < ¥ Bl & (0] X Bl ™ (1],

Taking logarithms, we have
h(s) < 3(h(s'—s)+h(s'+5)).

Consequently, h(s) is convex from below.
Note that

h(0%) = logkz E [gx (X))].
=1

Now, we prove that the function (h(s’)—h(0*))/s’ is nondecreasing for s’ > 0.
Let us put p, =1—s/s’ and p, = s/s’, where s <s'. Since the function
h(s)—h(0*) is convex from below, we have

h(py x; +p2 x2)—h(0%) < p; [h(x;)—h(0*)]+ p; [h(xz) —h(0%)].
Putting x, =s’ and x; — 0%, we obtain
h(s)—h(0%) > s'[h(s)—h(0")]/s.

Thus the Lemma is proved.

All theorems in this paper are proved under the same conditions given
above; therefore we do not repeat them explicitly in the formulations.
Let us put

4,(0) = |F,()—® (1), teR, n>1,

where @ denotes the standard normal distribution function.
THEOREM 1. There exist constants b, r > 0 (depending on s) such that for
all n>1 and every t with
t2 > 2571 (1+s)log, (1/L,(g))
we have
4,(t) < bt ™22 L5 (g)+ T, (r),
where

L) = Y PIXd > rlB,]
k=1



NONUNIFORM CENTRAL LIMIT BOUNDS 151

and
log, x = max !0, log x!.

Proof. Without loss of generality we may and do assume that t > 0 (if
not, replace the random variables X, by — X;, 1 <k < n). Define

X=X 10X, <rlt|By), 1<k<n, Sy=} Xf,
k=1

where r = [2(1+5)(2+5s)]" . Then
P[S,>tB,] < P[S* > tB, ]+ T,(r).
Furthermore, by Lemma 2 of [5], p. 166, for
t2 > 25~ (1+s)log. (1/L,(g)),
we get '
(-1 <(m)~ Y2 t" exp(—1t*/2(1+5)) E,(9) < by t72C*I L (g),

where (and in the sequel) b, b,, b,, ... denote positive constants which may
depend only on s and the same symbols may be used for different constants.
Thus

(2.1) 4,() < by t7 22TV L5 (g)+ P[SY > tB,]+ T, (r).
Let

h=t"'B,[2log, (1/L,(9))+r "logt].
Then
(2.2) P[S¥ > tB,] < exp(—htB,) E [exp(hS¥)]

=t~ '"[L,(9)]* E [exp(hS})].

But, by our assumptions, we have
E[exp(hS?)] = [] E [exp(hX})]
k=1

and for 1 < k < n one can obtain the following inequalities:
hE|X¥ < hol/rtB, < b,6%/B2, E(X¥)? < o,
h*E|X¥* exp(hrtB,) < h*t*[L,(9)]1~ " E[Xi g% (XJ1rBd/g* (rtB,),

where s* = max |s > z > 0: x/g*(x) is nondecreasing}. Putting in our Lemma
Y, =X, i(x)=x, r=2,1<k<n we have

L, (9) < [L(9)1*™.
Therefore

WE X2 exp(hrtB,) < by E[X2g* (X)) ¥ E[X2g"(X0)],
k=1
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where b, is an appropriately chosen constant. Taking into account the
inequalities given above, we get

E [exp(hX})] < exp[h*6}/2+ b, 6¢/BE+ b3 E[X}g* (X)) Y. E[X? ¥ (X)),
k=1
and therefore

ﬁ E [exp(hX}#)] < exp[(h* BZ/2)+b,].
k=1

Since ¢t > [2s“(1+s)log+(1/lf,,(g))]”2, we have

B2h*/2 < log, (1/L,(9))+ 2s(2+s5) logt + bs.
Thus
E [exp(hS})] < b t***9[L,(9)] "7,

and the desired estimation follows from (2.1) and (2.2).

THEOREM 2. There exist positive constants b and r (depending on s) such
that for all n>1 and every t with

' 12 < 2571 (1+s)log, (1/L,(g))
we have

4,(t) < bexp[(o—1)t%/2] L5, (9)+ T, (r),

where 6 = s*/2(1+s) and s* = max {s = z > 0: x/g°(x) is nondecreasing}.

Proof. We prove the theorem only for ¢t > 0, as the proof for t <0 is
analogous. For 0 <t < 1 the theorem follows immediately from Theorem 5

in [10], p. 112. Let t > 1 and let d > 0 be a real number to be determined
later. Then

|P[S, <tB,]—®(t) < |P[Sy <tB,]—®(t)|+ T,(d),
where
St =Y X,I(X, <dtB,)
k=1

and

T@)= Y PLX| > dB,].
k=1

Thus it is enough to show that
|P[S? <tB,]— (1) < bexp[(o—1)t¥/2] L; (9).
To this aimn let us put X¥ = X, I(|X;| <dtB), k=1,2,...,n and for
1<k<n
h (¢) = E [exp(tX¥/B,)],
my (1) = b ' () E[ X} exp(tX}/B,)],

M,0)= Y m(), D)= Y di(),
k=1

k=1
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where

[mi (6)+di ()] h (1) = E[(X})* exp(:X}/B,)].
Furthermore, let
Gi(x) = [ h'()exp(tu/B,)dP[X} <u].

Then standard methods (see e.g. [4]) yield
P[S¥ >1tB,] = A,(t) j exp(—ztM,(t) B, ')dG*(2),

where [...] denotes [z > (tB,— M (t) . '(1)] and

An(t) = n he(t)exp(—tM, (1) B, ),
k=1

and
G*(Z) Gl *GZ* *G'n(ZDn(t)'*'Mn(t))

is the convolution of the distribution functions G,, 1 <k < n.
Note now that for every k =1, 2, ..., n the following inequalities are
true:

(23) |[E X}¥| < by E[X g% (X))/tB,g*" (B,),
(24) exp(—dt?) < h, (1) < exp(dr?),
(2.5) 0 < o —E(X?)* < b, E[X{g* (X))/g" (B,),

(2.6)  E[X¥exp(tX¥/B)] < byexp(d>)E[ X} g* (X)]1tB./g" (B,).

Now, using (2.3)12.6), we have

(27 Ih(0)—1—02t*/2B2 < byexp(dr)E X} g” (X,)/Big* (B,),

(2.8) | (t) my (1) — 02 t/B,| < bsexp(dt?)E X} g* (X,)/B,g* (B,),

(29) |E (X¥)* exp(tX,/B,) — 0i| < b exp(dt’) E X7 g* (X,)/g* (B,).
Furthermore, by the Berry-Essen inequality, Theorem 3 in [10] (p. 111),
formulas (2.3), (24) and (2.6), we get

(2100 sup|GR(2)—®(2)| < b;exp(3dt?) B,g~*'(B,) D, (1) Z": E X7 g% (X
k=1

zeR

But using (2.7)12.9) and (2.3)2.5), we have
(2.11) B, %|D?(t)— B2| < bg exp(3dt?) L, (g).

Furthermore, taking into account (2.7){2.9) and the identity (38) in [11], p.
446, we can obtain the following inequalities:

(2.12) |4, (8)—exp(—1?/2)| < by exp(3dt?) L (g),
(2.13) IM, (1) B, ' —t| < byoexp(3dt?) L, (g).
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On the other hand, by (2.10) and (2.13), we have
(214) | [ exp(—tzM,(0) B; )d (G} (2)— @ (2))| < by, exp(3dr?) L5 (g)
()

and

(215) | [ exp(—1zM,(t) B; \)d®(z) —exp(t%/2) & (—1)|
.1
< by exp(3dt?) L, (g),

where [...] denotes [z > (tB,— M,(1))D, ' (1)]. Thus, by (2.12), (2.14) and
(2.15), we get

|P[S¥ <tB,]—®(t} < bexp[(oc—1)t?/2]exp [(6d —0)1?/2] L, (g).

The last inequality completes the proof of Theorem 2.

From Theorems 1 and 2 we can easily obtain a generalization of the
Berry-Essen inequality obtained in Theorem 6 of [10], p. 115, and [3], [8],
[9] and [6].

THEOREM 3. There exists a constant b depending on s such that for all n
=21 and teR

4,(1) < bg*(B) (L, (@) + Ly (9W/(1 +1t2 g°(tB,)).

Proof. For |t] < 1 the assertion follows from Theorem 5 of [10], p. 112.
For |t| > 1 the proof of this theorem follows from Theorems 1 and 2.

From Theorems 1 and 2 we can also obtain the approximation of the
moments of S,/B, of order greater than 2 by the corresponding moments of a
standard normal distribution. This problem has been studied in [1], [2], [7],
and [6].

THEOREM 4. Suppose the function g is differentiable. Then there exists a
constant b > 0 depending on s such that for all n> 1

IE[S79°(S.)/Ba g’ (B)]—E[N?g°(NB,)/g*(BJ)]l < b(L,(9)+ L, (9)),

where N is a random variable with the standard normal distribution.
Proof. Since S2g*(S,)/B2g*(B,) > 0 implies

E[S:g°(S)/Big*(B)] = ((5) P[IS,) > h™'(t) B,]dt)/g°(B,),
where h(t) =t>g*(tB,), teR, and s > 0, we obtain
|E [S? g*(S,)/B? g°(B,)]—E [N?g*(NB,)/g°(By)]|

< [IPOSI > K™ ©B1—~20(h" () dt/g*(B,).
0
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Thus putting a, = 257! (1+5)log. (1/L,(g)), from Theorems 1 and 2 we get

TlP[lS..I >h™'(1) B,] =20 (h™ " (1))] dr
< b, L (9) [exp[—(1—0)[h™ " ()]¥/2] dt

£byLg) [ TR (0] 22*9 dy

ay

(PX\) = h~'(t)rB,]} dt.

n
+2
k=1

Since the integrals in the first two terms of this inequality are finite, the
conclusion of Theorem 4 is proved, as

O ey R

2 [{POXd=h"'(rB,]}dt < bL,(9).
k=1 0

Now let us consider the speed of convergence to zero of 1—F,(t,) under
the assumption that t, -+ o0 as n— oo.

THEOREM S. Let (t,, n > 1) be a sequence of real numbers such that t,
— 00 and

(2.16) 12 < 2log, (1/L;,(9)) + log. log.. (1/L4(g)+ M,

where M is a positive constant. If

(217)  Li(t, 9) = Ai] E[X{g (XD I( X > ¢, B..)]/kZ:‘: E[X{g°(XJ]— 0
as n— oo, then _ B
1—F,(t,) ~ 2m)~ Y21, Yexp(—t%/2).
Proof. Without loss of generality we may and do assume that
tr < 2571 (1+5)log. (1/L,(g))-
From Theorem 2 we get
tyexp(t2/2)|P[S, = t, B,]— ®(—1,)| < bt,exp(t2a/2) L (g)
+g"(B,)/g* (t, B,) [exp(t2/2) L, (9) L, (tn, 9)1(1/1,).
Since t2 < 2s'(1+s5)log. (1/L,(g)), we have
tuexp(tz 0/2) Ly (g) = o(1).

It is easy to show that, for t > 1, g(B,/g(tB,) <1 and the function
t — t~'exp(t?/2) is nondecreasing. Then

(9 (B/tag(t, B,)exp(t3/2) L, (g) = O(1).
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Thus, taking into account (2.17) and Lemma 2 of [5], p. 166, we obtain the
proof of Theorem 5.

Let us observe that from Theorem 5 we can easily obtain the main
results of Rubin and Sethuraman [12] on probabilities of moderate devia-
tions under the much less restrictive moment conditions. Namely, if

Bin>1 and sup((l/n) ¥ EX2g*(X,) < oo,
n k=1

then there exists a constant M > 0 such that

slog., g*(\/n) < 2log, (1/L(9))+ M.

Therefore, if (2.17) holds, then from Theorem 5 with 12 = slog, gz(\/;) we
get

P[IS, > B,(slog, g*(, ‘m)"*] ~ 2(g(\/m) " (2nslog. g*(\/m)"*.

For sequences |t,, n > 1} with t, — oo which do not satisfy the assump-
tions of Theorem 5 we have the following

THEOREM 6. Let {t,, n=> 1} be a sequence of real numbers such that t,
— o0 and

t2—2log, (1/L,(9))—log log. (1/L,(g9)) » © as n— oo.
If (2.17) holds, then
(t2°(t. B)/g* (B))(1 — F,(t,) = o(L;, (9))-
Proof. Let
tr = 2log, (l/lfn(g))+1°g+ log.. (1/L‘,,(g))+ Qp,

where a,— o as n— 0. From Theorem 1 for all n>1 such that 2
>2s” ‘(1+s)log+(1/L’ (9)) we get

P[S,>1t,B,]

< O(—t)+b, L, (g)t, 2+ +1, 2 g°(BY/g* (t, B,) Ly (g) Ly (tn, 9),
where
®(—1;) < by, 22" Ly(g), ¢'(t.B)/g*(B) <),

On the other hand, by Theorem 2, for all n > 1 such that

tr < 257 1(145)log. (1/L,(9)),
we have

P[S,>t,B,] < ¢(—t..)+bl-’;(g)°XP [e—1)t2/2]
tx 2g’(B.)/g* (tx BY) L, (g) L, (t., 9)-
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But, taking into account Lemma 2 of [5], p. 166, we get
(2.18) (t79°(ta B,)/g* (By) P (—t,) < bL,(g) exp(—ay/2).
Furthermore
(t29°(t. B)/9*(B,) L, (g) exp [(a — 1) 13/2]
< (btag* (ta BYg* (B exp(— 12/ (L ()™ (log. (1/L3(9) .

Thus using (2.18) we obtain the desired assertion.

Let us observe that under the assumed moment conditions and the
assumption (2.17) the property

ta—2log, (1/L,(g))—log . log. (1/L,(g)) — o

characterizes the sequence {t,, n > 1} for which the assertion of Theorem 6
holds. The proof of this fact is an obvious modification of the proof of
Remark 2 in [9].

Let us denote the L,-norm (1 < p < ) of any function f with respect to
the Lebesgue measure by

Ifll, = (f1f1Pdw)"" and  |Ifll. = suplf ().
R

xeR

THEOREM 7. Assume the function g is Hi_fferentiable. Then there exists a
constant b (depending on s) such that for all n>1 and every p (1 < p < )

(2.19) 4. [(R@) ™" K 0] "||, < b(Lnlg)+ L (9)),
where h(t) = g*(tB,)t*/g°(B,) and h'(t) is the derivative of the function h(t).

Proof. Let us observe that, by Theorem 3, (2.19) holds for p = c0. On
the other hand, if 1 < p < oo, then

4. @ [(h ()"~ l h’(t)]l/p”p < 14,0 k@115 7114, K @)137.
Thus the proof will be completed if we show that
14, @) B (0)ll; < b(L(9)+ L, (9))-
Let a,(s) = 2s~'(1+s)log, (1/L,(g)). Then using Theorems 1 and 2 for ¢

= a,(s) and t < a,(s), respectively, we get

4, Oll; < b(Ly(@)+ L5 @)+2 Y, [{K@®PLX,l > rtB,]}dt.
k=10
Now we observe that

S [ (H@)PXd > rtB,]}dt < bI:(g).

k=10

The proof is completed.
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