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MINIMAL ALGEBRAS IN SOME CLASS OF ALGEBRAS

BY

K. GOLEMA-HARTMAN (WROCLAW)

We write A = (4; ¢4, ..., ¢,) to indicate that Wis an algebra, A the
set of its elements, and ¢,, ¢,, ..., ¢, its fundamental operations. An
algebra U, is called minimal in a class X if, for every algebra Be X" and
every n, w,(8) > v,(U,), where o,(U) is the number of operations essen-
tially depending on » variables (in other words, of essentially n-ary op-
erations). _

The notion of minimal algebra was introduced by Dudek [1] who
has studied the existence of minimal algebras in some classes of algebras
with two binary operations. Here we shall be concerned with a class X
of algebras with two essentially binary algebraic operations, one of which,
denoted by -+, is commutative and idempotent, whereas the other, denoted
by dot (which may be omitted), is diagonal (see [4]), i.e. idempotent
and satisfying the identity x(yz) = (vy)z = x2. We prove that in X
minimal algebras actually exist and, moreover, that any such algebra
is the product of two non-trivial semilattices with an additional diagonal
operation suitably defined therein. These results were announced in [2],
unfortunately with a misprint: in the definition of a minimal algebra,
the sign = has to be replaced by >.

Following the paper [3] we define simple iterations of the binary
operation + by

fil@) =1, fo(@y, %) = @+ 2y,
Joar1(@1y Ty oevy Tpiy) =fs(fn($u eey Tp)y wn+l) (n>1),
and its complete iterations by
fi =f2 = a+a,,
fa(@1y.eey )
=fn(fz(“f'11 3), fi (@3, B3), f (@5, - .o, wB)’:"’f:—l(wzn—l+l7 ceey -’Dzn))-
LeMMmA 1. The operation

(*) 1Y+ 2Y,
18 essentially 4-ary.
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“Proof. If an operation is invariant with respect to some pefhlﬁtatibﬂ
of variables interchanging, say, ¢, and x,, then either it depends actually
on both z, and x, or on none of them. Since the operation -+ is commutative,
we have x,y,+2,Y; = @Y.+ 2,9,, and 50 (*) depends on both z; and =z,
or on none of them. The same is true for y, and y,. Suppose that (x) does
not depend on z,. Then the operation z,y, which arises from (*) by putting
x, = %, and Yy, = ¥, is also independent of z,, contrary to the assumption
that the operation - is essentially binary.

LeMMA 2. The operation

(%) F(@yy ooy @) =fk(wi1 vy @) fi(@ RRRENL

where {iy, ...y% 01y ---3Ji} = [1, n] and the arguments in each bracket on
the right-hand side are all different, depends essentially on all x;’s.

Proof. Suppose that f does not depend on one of the variables
Ty« ooy Ty, ©.8. o0 &; . The right-side multiplication of (#*) by a variable «
and the diagonality of the operation - imply

F@y eoey @)t = Fo@ s ooy Bg) 0,

where the right-hand term does not depend on z;. We now extend the
simple iteration f, to the complete iteration fj, thus replacing «; by
a block of new variables on which f, does not depend. Since in a complete
iteration any two variables may be interchanged, f; does not depend
on any variable. We identify in the term f-u all variables appearing in
fr and write  for each of them. Since + is idempotent, we get z-u. Since
fr-w does not depend on any of the variables just replaced by «, the
operation -« does not depend on #, contrary to the assumption that
s is essentially binary.
Lemma 3. If
f= fk(wil’ seny wik) 'fl(wjla Y wjl)y
g =fp(walv coey g )'fq(mﬁ’ SRS wtq)7

where {81, ...y Uy Jry oo Jif = {815 -+0s 8ps tyy ey B} = [1, n] and the varia-
bles in each bracket are all different, and if

{15 -0y Ty} 7/:{56:1"“"”3,,} or  {@;, ..., Ty} 7&{‘”!1’"-75”!,1}7
then f +# g.

Proof. Suppose that

{@e) ooy @y} # {@ayy oo To}  ANA &y f (T ey T}

If we had f =g, then the right-hand side multiplication by
To(®ay ooy x,p) would lead to
).

fk(wil’ ceey wik) 'fp(mal’ teey wap) =fp(wal7 o0y Tg,
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.. Since x; appears here on the left-hand side without appearing on
the right-hand side, the product f;-f, does not depend on w; , but this
contradicts Lemma 2.

LeEMMA 4. Let 7,(UA) denote the number of those operations in U that
obey scheme (*x), where the arguments in each bracket are all different. Then
7,(N) = 3" —2. If + is (commutative and) associative, then z,(UA) = 3" —2.

Proof. By Lemma 2 every operation of type (*%) depends on all
variables and, in view of Lemma 3, any two such operations are different,
provided the sets of their arguments do not coincide in each pair of cor-
responding brackets. Hence the number of operations (*«) is not less
than the number of representations of X = {z,, #,, ..., x,} as the union
of two non-empty sets X, and X,. If X, = {#; , ..., ¥}, then X, consists
of all remaining variables and, possibly, of some elements of X,. Conse-
quently, if X, is fixed and k¥ < n, there are

(- +f) -

possible choices of X,. For k¥ = n there are only 2" —1 such possibilities,

since the term (n

0) would correspond to X, = {z,, =,, ..., x,} and X, = O.

There are (:) ways for X, to contain exactly & elements. So, for a fixed

n
k

k < m, there are (
their number is 2" —1. So we have finally

)2" representations of X as X,UX, and, for k = n,

n n "\ on
7, (W) = (1)21+ (2)22+ +(n)2 -1

_ n 0 n‘l n n__ — Qn__
= (0)2 +(1)2 + ... +(n)2 2 =3"-2.

If + is associative (and commutative as is throughout supposed),
then

(***) fn(wl’ ceey wn) = (w,-l—l— cee +wik)'($j1+ .... +mjl),

the ordering within the brackets being arbitrary. Hence, every repre-
sentation of type X = X,UX, determines only one operation (**), and
so the second assertion of the lemma follows.

Lemma 4 implies immediately
COROLLARY. For e X we have w,(A) > 3" —2.

Remark 1. The estimation of Lemma 4 cannot be improved by
taking into account operations of type f,(z;,...,,).
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In fact, since the operation - is idempotent, we have f,-f, = f.,
and so f, is actually of type (*%) with k =1 = n.

Remark 2. It is obvious that the equation ,(A) = 3" —2 holds
if and only if every representation X = X,U X, determines only one
operation.

LeMMA 5. Suppose that in an algebra W = (4 ; +, -) with + associative
and idempotent and with - diagonal the following identity holds:

(1) , i (X1 +@3) (X3 +24) = 21 T3+ Xy 4.

Then we have identically

(Br+ @+ oo +8) (Y1 + Y2+ --o +Yp) = C1Y1 +22Yg+ ... +TuYp.

The proof is by induction.

LeEMMA 6. If the algebra A = (A; +, -) satisfies the assumption of
Lemma 5, then every operation in W is of type (*x=x), where the variables
in any bracket are all different.

Proof. Assuming «, =z, (#; = #,) in (1), we conclude that - is
left-side (right-side) distributive with respect to 4. Distributivity and
diagonality of - imply that every operation in U is representable as the
sum of terms of type z;-x; or x;. Consequently, since x; = x;-;, every
operation can be written as x; -®; + ... +; -¥; and, by Lemma 35,
this is equal to

(w‘-l+ cee -I—w,m)'(wjl—l— ) -{—.’D]m).

Since + is idempotent, every summand in each bracket may be
written only once, and thus scheme (*%*) actually appears.

THEOREM 1. In the class X there exists a minimal algebra W, such
that w,(A,) =3"—2 for n =1,2,...

Proof. Let A, = (X,; +), U = (X,; +), where |[X;|>1, [X,|>1
and - is essentially binary, associative, commutative, and idempotent.
We introduce into the product A, xA, = (X, X X,; +) an additional
operation - defined by

(2) (@1 @3) - (by, bg) = (@4, by).

It is easily proved that the resulting algebra A, = (X, x X,; +, )
belongs to ) and satisfies the assumption of Lemma 5; hence, in view
of Lemma 6, every operation in %, is of type (**x). Consequently, o, (%U,)
= 7,(%,) and so, by commutativity of -+, we deduce from Lemma 4 that
there are exactly 3" —2 n-ary operations in %U,; the proof is completed.

The following theorem shows that the algebra A, we have just used is
not a mere example.
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THEOREM 2. Every algebra that is minimal in X 18 isomorphic to an
algebra of type W,, i.e. to the product of two algebras A, = (X,; +) and
A, = (X,; +), where + 1is essentially binary, associative, commutative
and idempotent, and - i3 defined by (2).

The proof will be based on the following theorem.

THEOREM 3. Suppose that in A = (A; +, -) both operations + and -
are essentially binary, with the first being associative, commutative and
tdempotent, and the second being diagonal. If (1) is fulfilled, then there
exist algebras N, = (X,; +) and N, = (X,; +) with the operation + essen-
tially. binary, associative, commutative and idempotent and such that W ~ A,
= (X, X X,; +, -), where + operates coordinatewise, and - is defined by (2).

Proof. We introduce in 4 two relations R, and R, defined by

alRlaz <~ alaz = az, aleaz <~ a1a2 = al.

It is easy to check that these relations are of equivalence‘type and
that they preserve + and -. Moreover,

() aR,NR,b <-a = b,
(B) VaR,R,b.
a,b
In fact,

aR,NR,b < (aR,b and aR,b) < (ab =b and ab =a) <-a =D,
aR,R,b < J(aR,c and cR,b).
[

Actually, ¢ = a-b holds, since ac = a(ab) = ab = ¢ or else aR,c and
¢b = (ab)b = ab = ¢, whence cR,b. For acA, let [a]g and [a]z, be the
cosets of R, and R,, respectively, to which a belongs. Let A, = (4/R,; +),
and A, = (A/R,; +). Each of the algebras U, and A, contains at least
two elements, since otherwise one of the relations R, and R, would hold
identically, contrary to the assumption that - is essentially binary. It
is obvious that + is associative, commutative and idempotent in both A,
and U, (as was in %). Hence and from |A,| > 1, |A,| > 1 we easily deduce
that -+ is essentially binary. Further, («) and (8) imply that the canonical
mapping ¢(a) = ([alg,, [@]r,) of A into A |R, X A[R, is bi-univalent and
onto. In A/R, X A/R, we define the operation - by formula (2).

It can be easily checked that - is diagonal. We now show that ¢
preserves -. Indeed, we have

g(a)-¢(b) = ([alg,, [alr,) ([blr,, [bIR,) = ([alg,; [blg,)-

Since ab = a or else abR,a, so [ablg, = [a]g and, similarly, [ab]g,
= [b]g,. Hence

¢(a)-@(b) = ([ablg,, [ablr,) = p(ad).
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Thus ¢ is shown to be an isomorphism of U onto
A = (A/R1 X A[Ry; +, ).

Proof of Theorem 2. If an algebra U is minimal in X%, then, for
every m, it contains 3" —2 essentially n-ary operations. By Lemma 4, in &
there are at least 3" —2 m-ary operations of type (*x), so W cannot
contain any other operation. This implies

(i) 0,(A) = 7,(A) = 3" —2,
(ii) every operation in U can be represented by means of 4+ and -.

On account of (ii) we may admit + and - as the only fundamental
operations in . It is enough to prove that

(%14 ®g) +a3 = 23+ (2+x3) and (2,4 @) (T34 2) = @23+ 2,24,

and to use Theorem 3. Since z, + (2, + 2;) = (2, + 2;) + 2,, the first identity
will be proved by showing that (2, +,)+x; = (€5 + o5) + 2;.

In the opposite case, A would admit two operations, with three
variables, of type

fn(-"’n ooy &) =fn(m17 evey mn)'fn(wl’ ooy D).

But, in view of (i), this would contradict Remark 2 after putting
in it X == ‘Xl = .X2 = {wl’ wz, ws}.

To prove the second identity let us observe that, by associativity
of +, the (essentially 4-ary) operation x,2;-+ x,2, must coincide with
some operation of type (*#x), i.e. it must be of the form

(wi1+ ces +m,-k)°(wjl-|— cee -I—.’le),
where every argument belongs to the set {z,, #;, @5, ,}. Hence
T, T3+ Ty = (w¢l+ +w¢k)-(wjl+ +wfz)'

Suppose that z, or z, appears in the second bracket. Then, if we
identify @, with «, and «; with «,, the above identity will imply one of
the equations

Ty Ty = Xy (%, + @5) &1 %3 = XT3y,
1@y = (@) + X)Xy, 1%y = Xy(@; + @),
&y Ty = (B, + @) (X1 + ),

each of which contradicts Lemma 3. If z; or «, appears in the first bracket,
a similar contradiction can be obtained. So only one possibility remains,
namely in the first bracket «, and z, appear, whereas in the second z,
and z, do. So it must be

Xy Byt By By = (¥ + @) * (05 + @)

which completes the proof.
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