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0. Introduction. Let 2 be an open set in R™ x ... X R™  where
n1,...,Nn, are positive integers. We say that a function

f:923(at,...,2°) - f(z!,...,2°) e C

is p-separately analytic (where 1 < p < s) if for every point (z},...,z}) in
2 and for every sequence 1 < #; < ... < %, < 8 the function

i i 1 i1—-1 i) i1+l ip—1 i, iptl s
(z't,...,2'%) > f(zgy..., 25,z 2807, ... 20" ,z'P,2s" ,...,25)

is analytic in a neighborhood of (zi!,..., zf,’) in R™1 X ... X R™>».
Given a function f : 2 — C p-separately analytic in 2, we put

A := {z € £2; [ is analytic in a neighborhood of z} .

The set S := 2\ A is called the singular set of f.
The aim of this paper is to prove the following two theorems.

THEOREM 1. Let p be an integer with s/2 < p < s and let f be a p-
separately analytic function in an open set 2 in R™ x ... x R™. Then for
every sequence 1 < j; < ... < jq < 8, where q := s—p, the projection §;, ;.
of the singular set S of f on R™1 x...XR™« is pluripolar in C™1 x...xC"a,

THEOREM 2. Given any fized integer p with 1 < p < s, let S be a closed
subset of an open set 2 in R™ X ... x R™ such that for every sequence
1< 51 <...<Jjq <8, where g := s — p, the projection S, ;. is pluripolar
in C™1 x...xC™s. Then there is a p-separately analytic function f : 2 — C
such that S is its singular set.

Taking s = 2, m = n;, n = ng, p = 1, one gets the following

COROLLARY 1. Let S be a closed subset of an open set 2 in R™ x R™.
Let S1 and S; be the projections of S on R™ and R™, respectively. Then
S1 and S, are pluripolar in C™ and C", respectively, if and only if S is the
singular set of a separately analytic function f : 2 35 (z,u) - f(z,u) € C,
where z € R™, u € R™.
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COROLLARY 2. Let S be a closed subset of an open set in R* (n >
2). Then S is a singular set of an (n — 1)-separately analytic function
f:92 — C if and only if for each j = 1,...,n the projection S; of S on the
real coordinate line z; is polar as a subset of the complex z;-plane, where
zZ; =2z; + iyj.

If m =1, n =1, Corollary 1 is equivalent to Saint Raymond’s result [4].

We do not know whether Theorem 1 remains true for 1 < p < s/2.

EXAMPLE. It is clear that if f is p-separately analytic, then it is ¢-
separately analytic, where 1 < ¢ < p. On the other hand, the function

p+1

(1) f(z,...,2°%) = |2} f2. ..|:c’|2exp(—1/z |z"|2) :
i=1

where 1 < p < s, is p-separately analytic in R"* x ... X R™ but it is not
(p + 1)-separately analytic. Here |z’| denotes the euclidean norm of the
vector z' in the space R™. The singular set S of the function (1) is given
by
S ={(z,...,2°) ER™ x ...xR™; |2'| =0 (i=1,...,p+1)}.
We shall need the following known results:

THEOREM 0.1 (Bremermann [2]). If u is a plurisubharmonic (plsh)
function in a domain of holomorphy D in C" then there exists a sequence
{f;} of holomorphic functions in D such that the functions (1/j)log|f;|
are locally uniformly upper bounded in D and u(2) = v*(z), where v(2) :=
limsup;_,,(1/5)log|fi(2)| and v*(z) := limsup,_,, v(a).

THEOREM 0.2 (Hartogs Lemma [3]). Let {u;} be a locally uniformly upper
bounded sequence of plurisubharmonic functions in a domain D in C*. If
limsup;_, ., u; < m in D, then for every compact subset K of D and for
every € > 0 there is jo = jo(K,€) such that uj(z) < m+ € for j > jo and
z€EK.

THEOREM 0.3 (Bedford-Taylor theorem on negligible sets [1]). Let {u;}

be a locally uniformly upper bounded sequence of plsh functions in a domain
D in C™. Then the sets

{z € D;u(z) := liﬁs:)p u;(2) < u*(2)},
{z € D;v(z) := sup uj(2) < v*(2)}
j

are pluripolar (shortly plp).

THEOREM 0.4 [6]. Let B be a fized bounded domain in C", e.g. a unit
ball. A compact subset K of C™ is pluripolar if and only if a(K) = 0, where
a(K) := inf; a}/J(K),
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a;(K) := inf{||pllk; p is a polynomial on C" of degree < j such that
llplls = 1}

Let D; be a simply connected domain in the z;-plane symmetric with
respect to the real zj-axis. Let [a;,b;] be a compact interval of the real
axis contained in D; (j = 1,...,m). Let G be a simply connected domain
in the wg-plane symmetric with respect to the u,-axis and let [ck,dx] be a
compact interval of the real axis contained in Gi. Put

= [a,b] x GU D X [c,d],
where [a, )] := [a1,01] X ... X [am,bm], D := D1 X...X Dy, [¢,d] := [c1,d31] X
.. X [en,dy], G := Gy X ... X Gp. Let h(zj,[a;,b;], D;) be the continuous

function on Dj, harmonic in D; \ [a;,b;], equal to 0 on [a;,b;] and to 1 on
0D;. It is clear that

X := {(z,w) € DXG; (ax h(z;, [aj,bj],Dj)-i-lIél,?%(n h(wk, [ck, di], Gi) < 1}

is an open neighborhood of X.
We say that a function f: X — C is separately holomorphic on X if

(i) for every z in [a, b] the function f(z,-) is holomorphic in G;
(ii) for every u in [c,d] the function f(-,u) is holomorphic in D.

The following theorem can be easily deduced from Theorem 2a of [5].

THEOREM 0.5. There is a family {®qp : (o, 8) € I} x I%} of holo-
morphic functions in D X G such that every function f bounded (1) and
separately holomorphic on X can be ezpanded in a series

(2) f(Z, w) = z Cap¢ap(Z,W) ’ (Z,'UJ) € X.

Moreover, the series (2) is locally uniformly convergent in X so that

its sum f gives a holomorphic eztension of f from X to X. In particular,
every function f bounded and separately holomorphic on X is real analytic
in a neighborhood of [a,b] X (R* N G)U (R™ N D) X [¢,d] in R™ x R™,

1. Proof of Theorem 1. First we shall prove

THEOREM 1'. Let f : 23 (z,u) — f(z,u) € C be a separately analytic
Junction of two vector variables z € R™ and u € R"™, where {2 is an open
subset of R™ x R™. Let S be the singular set of f and let S; and Sy be its
projections on R™ and R™, respectively. Then S; is plp in C™ and S, 1s plp
in C".

(}) This assumption is superfluous [5], but it makes the proof much easier.
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Proof. Fix I = [a,b] = [a1,01] X ... X [@am,bm]), J = [¢,d] = [c1,d1] X
... X [en,dy] such that I x J C £2. It is sufficient to show that S; N I and
S2 N J are pluripolar.

For every integer k > 1 the set

J¥ .= {w e C* max dist(w;,][c;,d;]) < 1/k}
1<5<n

is an open neighborhood of J such that J¥+! C J*, J = Nr2, J*. The set
Ey := {z € I; f(=,-) is holomorphic in J* and sup,¢ s | f(z,w)| < k}

is closed, Ex C Ei4y and I = |J;2, Ex. By the Baire property of R™ the
set U := |J32, Ej is open and dense in I. Similarly we define an open dense
subset V of J. We claim that

1° The set (I x V)U (U x J) is contained in the domain of analyticity
Aof f.

We shall prove that I x V C A. The proof of the inclusion U x J C A4
is analogous. Fix (z¢,ue) in I X V and let [y, §] be an n-dimensional closed
interval such that ug € [y,8] C V. Then |f(2,u)| < k for all (z,u) in
I* x [v,6] and f(-,u) is holomorphic in I* for every fixed  in [y, 6] and for
all k£ > ko.

Let [a, 3] be an m-dimensional closed interval contained in U. Then
|f(z,w)| < k for all (z,w) in [a,l] x-J*¥ and f(z,-) is holomorphic in J*
for each fixed z in [, (] and k£ > k;. Hence if k¥ > max(ko,k;) then f is
separately holomorphic and bounded by k on [a, 8] X J* U I* x [y,6]. By
Theorem 0.5, f is real analytic in a neighborhood of I x [v, §], in particular
(zo, 'uo) € A.

We shall now prove that §; NI and S; N J are pluripolar. It is enough
to show that §; N I is plp. Define

2(2) 1w

the supremum being taken over all @ in Z%. Then

(1.2) f@utw)=Y = (a%) f(z,u)w® and

1/|e
’ (:l:vu)e 97

(11)  Qz,u):=sup

a!
|f(z,u+ w)| < (1 - |w|Q(z,v))™"
if |w| < 1/Q(z,v), (z,u) € 2, we C™.
We claim that
2° For each fized u in V, the function Q(-,u) is quasi-almost everywhere

(g.a.e.) continuous on I, i.e. Q(-,u) is continuous on I \ E, where E is a
plp set in C™,
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Indeed, f being analytic on I X V, we may assume f is defined and
holomorphic on D x B, where D is a domain in C™ with I C D, and
B = B(u,r)is a ball in C" with center u and radius 7 > 0. By the Bedford-

Taylor Theorem 0.3 the set
1 (0\° .
2 (3) 1@ <o (z)}

is pluripolar. The function ¢ is lower semicontinuous as an upper envelope
of continuous functions. Therefore N is identical with the set of disconti-
nuity points of . In particular, the function z — Q(z,u) = ¢(z) is q.a.e.
continuous on I.

Now we shall prove:

1/la|

N = {z € D; ¢(z) := sup
a

3° If (zo,u0) € S then there ezists r > 0 such that for every u in V N
B(uq,r) the function Q(-,u) is discontinuous at zg.

Suppose on the contrary that for every r > 0 there is u in V' N B(uo, )
such that Q(-,u) is continuous at 9. Put R := 1/Q(z¢,up). Take u in V' N
B(ug, R/4) such that Q(:, u) is continuous at zo. It is clear that 3Q(zo,u) <
4Q(zo,up). By the continuity of Q(:,u) at zo there is an interval [a, 3] in
R™ with z9 € [a,8] C I such that 3Q(z,u) < 4Q(zo,uo) for every z in
[a,B]. Hence f(z,-) is holomorphic in the ball B(ug,R/2) for every z in
(@, B]. Moreover, by (1.2), f is bounded on [a,S] X B(up,R/3). On the
other hand, by the argument used in the proof of 1° one can find an interval
[7,6] in J N B(ug, R/3) and a domain D in C™ such that I C D and for
every u in [v, 8] the function f(-,u) is holomorphic in D. Moreover, f is
bounded in D X [v,6]. So f is bounded and separately holomorphic on

[, 8] X B(uo, R/3)U D x [v,6],

which shows (by Theorem 0.5) that (zo,up) € A. The proof of 3° is com-
plete.

Now we are ready to prove that Sy NI is pluripolar. Let W be a countable
dense subset of J. By 3°, S NI C UuEVnW E,, where E, is the set of
discontinuity points of Q(-,u)in I. By 2°, E, is pluripolar in C™. Therefore
S1 NI is pluripolar, as a subset of a countable union of pluripolar sets. The
proof of Theorem 1’ is complete.

It remains to show that Theorem 1’ implies Theorem 1. Given fixed
sequences 1 < ¢ < ... < i, <sand 1< j; <...< j; £ ssuch that

{1,...,8} = {i1,.. ., i} U {41,.. ., 4g}, P+ ¢ = s, put
2* := {(z,u) € (R™ x...x R™») x (R™1 x ... x R™s);

z = (zil,...,x"), U= (zjl,...,z:j'), (zl,...,z‘)e .Q}.
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Then by the inequalities 3/2 < p < s the function
f*(z,u) = f(z!,...,2%), (z,u) € 2%,

is separately analytic in £2*. By Theorem 1’ the projection §j,.. ; of its
singular set S on R™1 x ... x R™s is pluripolar in C™"1 x ... x C™s.

2. Auxiliary lemmas. The proof of Theorem 2 will be based on several
lemmas.

LEMMA 2.1 [4). If 2’ is a bounded open subset of RN, then there is a
function v plurisubharmonic in CN such that

1° ¢¥(z) < 0 for z in £,
2° Y(z) =0 for z in RNV \ 2",

Proof. The function

(A) := 0 if Re A > 0,
PLA = 1 Re(X3) ifRed <O,
is subharmonic (because it is harmonic) at all points A with ReA # 0.
If A\ = i8, B € R, then ¢(if) = 0 < (2r)! foz"(,o(iﬂ + reft)dt =
(2r)? f:}'{z Re((iB + re'*)®)dt = 2r3, r > 0, which implies that ¢ is sub-

harmonic everywhere on the complex plane C.

Let {zx = (z51,..-,ZkN);k = 1,2,...} be a countable dense subset of
2" and let r := dist(zx,02'). Then the function

00 N
P(z) := E2"‘:p(2(zj —zy;)? - ri) , zeCN,
k=1 Jj=1

is plurisubharmonic in CV and satisfies 1° and 2°. Since the series is locally
uniformly convergent in CV, the function is continuous.

LEMMA 2.2. Let E be an F, pluripolar subset of IV, where I := {t € R;
—1 < t < 1}. Then there ezists an increasing sequence {m;} of positive

integers and a sequence {P;} of polynomials of N complez variables such
that

(a) |P(2)| £ 1 in AN, where AN is the unit polydisc in CV;
(b) limy—oo | Pi(2)|"/™ =0 on E;
(c) limjmo |Pi(2)]Y/™ =1 q.a.e. in CV,

Proof. Let K; be a compact subset of E with K; C K41, E = Uzl K;.
By Theorem 0.4 for every i there is a polynomial p; such that

(2.1) lpillav =1 and d;'log|pi(z)] < -2 on K;,
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where d; := degp; > 1. Put

u(z) := 3 27d;  log Ipi(2)]

i=1 .
Then u is a plurisubharmonic function in CV such that u(z) < log* |2| in
C" and u(z) = —oo on E. Observe that

u(z) = lim log [ Ipi(2)[V/*'% = lim p;"log|Q.(2)l,
i=1

Where HBs = H::l 2idi a‘nd Q,(Z) = H::l pi(z)“./zidi'
It follows from (2.1) that

’ .
ptlog|Q.(2) <log [] Im(2)IM/*% < ~(s=1), zeKi, s>1.
i=Il+1
Given [ > 1 take s; so large that s; — I > I2. Then plog|Q,,(z)| < —I? on
K;. It is now clear that m; := lu,, and P, := Q,, (I > 1) are the required
sequences.

Let P(N) be the space of all subsets A of N (natural numbers). P(N)
can be identified with the space {0,1}N endowed with the product topology.
Therefore P(N) is a compact metrizable space.

LEMMA 2.3 (Saint Raymond [4]). Let 2 C 2, be open subsets of CV
and let a be a fized point of 2N £2,. Let {gix} be a sequence of holomorphic
functions in 2, such that

(o o]

Z |lgk(2)| < +00  for every z in £2.

k=1
Then either the series Y p—, gk is normally convergent in a neighborhood of
a, or there ezists a rare (i.e. of the first Baire category) subset M of P(N)
such that if A € P(N) \ M then the function fa := Y ,c,9r cannot be
continued to a holomorphic function in a neighborhood of a.

3. Proof of Theorem 2. Without loss of generality we may assume
that £2 is contained in I™ x ... x I™ = IV where I := {t eR; -1 < t < 1},
N :=ny + ...+ n,. Indeed, by the bianalytic mapping

IN3§—>(ta.n—2§-l-...,ta, gN)eRN R™ x ...xR™,

the general situation is reduced to the special one.

Given 1 < j; < ... < jq £ 8, one can find (by Lemma 2.2) a sequence of
positive mtegers (m;Jl e )1>1 and a sequence of polynomials (Pyj, .. j, )i>1 in
(z1,...,299) € C™1 x ...x C™e¢ such that
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(i) |Plj1...j,| <lon A™1 X ...X A%,
1
1

1
1

(ii) imy—co mj;; ;. log| P, 5| = —00 on §j, .,

(iii) imi—oo my;, ;. log | Py, ...;,| = 0 q.a.e. in chV.

By Lemma 2.1 there exists a function % plurisubharmonic in CV such
that

(iv)p<Oon 2':= 2\ S,
(v)¥=00n RN\ 2.

Let {#,} be a sequence of entire functions (given by Theorem 0.1) such
that the functions (1/v)log|v,| are locally uniformly upper bounded in CV
and

(vi) ¥ = (limsup,_,(1/v)log|¥,|)* in cV.
Put

gk(z) = 1/),‘(2)"‘" H ijlqu(zjl’ cos ,Zj")o"‘fl-""c , ZE CN ,
1<1<...<jg <

my := H MEjyedes  Okjyge 1= KMk /mpg .
ISjl <---<jq$3

We shall show that the required function f is given by
F=) o

where A is a subset of N.

Indeed, by (i) the functions (km,)~1log|gk| are locally uniformly upper
bounded in the polydisc AV, and

limsup(km;)~'log|gk(2)| < limsup k! log |¥x(2)| in AV.
k—o0 k—oo

Therefore by (iii) and (vi)
(3.1) P(2) = (Ii,r‘nsup(lcmk)‘l log|gk])*(z) in AN.

The set £’ := {z € AV; 9(z) < 0} is an open neighborhood of 2'. We claim
the sequence {gi} has the following properties (a), (b) and (c).

(a) The series Y i~ , gk is locally normally convergent in 2'. More ez-

actly, for every fized zy in £2' there are a compact neighborhood V of zo and
real numbers 0 < 6 < 1 and ko such that

(3:2) lg(2)| S O*™, 2V, k> k.
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' ] . .
(b) For every fized (2§',...,23") in Sj,...;, the series
m .
1 =1 01 g141 jo=1 ,da ,dq+1 s
E gr(zt, .., 207 0 gl pdeml gl gdetl ] L 2%)
k=1

is locally normally convergent in A™1 X ... X A™».
(c) Let zo be an arbitrary point of S. Then every neighborhood U of 29
contains a point z' such that the series Y r, gk(z') is divergent.

Proof of (a). Given a compact neighborhood U of a point z € £’
with U C 2' we have @' := expsupy ¥ < 1. Take 6 with ¢’ < 8 < 1 and
let V be a compact neighborhood of 2y with V C U. Then by the Hartogs
Lemma (Theorem 0.2) one gets the required inequalities (3.2).

Proof of (b). This follows from (i), (ii) and from the locally uniform
upper boundedness of the sequence k=1 log |9/

Proof of (c). By (iv) and (v), given any neighborhood U of a point z
in S, the set {z € U; ¥(z) > 0} is not pluripolar. Therefore by (3.1) and the
Bedford-Taylor theorem on negligible sets limsup,_, ., (kmx)~! log |gx(z)| >
0 on a nonpluripolar subset E of U. It is clear that Y, gk diverges at
each point of E.

It follows from (a) and (b) that for every subset A of N the series

fa2):= Y aa(2)
k€A
represents a p-separately analytic function in 2 which is jointly analytic in
' := 2\ S. By (c) and by Saint Raymond’s Lemma 2.3 there is A € N such
that each point of S is singular for f4. The proof of Theorem 2 is complete.

PrROBLEMS. 1. The proof of Theorem 2 based on Saint Raymond’s
Lemma 2.3 gives only the existence of the function f. It would be interesting
to give an effective construction of the required function.

2. Does there exist a C* (resp. continuous) p-separately analytic func-
tion f: 2 — C such that § is its singular set?

3. Characterize the singular sets of C* (resp. continuous) p-separately
analytic functions.
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