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SOME PROBLEMS CONCERNING CURVES

BY

A. LELEK (ANKARA)

We use the term curve to mean any one-dimensional connected com-
pact metric space. The aim of this paper is to present a number of problems
which have been raised during a research conducted by the author(!).
The background and the motivation to these problems come from the topo-
logical classification of curves and their set-theoretical properties closely
related to the concept of connectedness. By a mapping we mean any con-
tinuous function from a topological space into another topological space.

For a metric space X, the span o(X) of X is defined to be the least
upper bound of real numbers r > 0 satisfying the following condition:
there exists a connected space Y and a pair of mappings f,g: ¥ > X
such that f(Y) = ¢(Y) and

dist[f(y), g(¥)]> 7

for ye Y. Thus we always have ¢(X) > 0. The space R of real numbers
has span o(R) = oo, and the space S of complex numbers with module
one has span o(8) = diam 8 = 2. If A is an arc, i.e. a curve homeomorphic
to a segment of R, then o(4) = 0. By a free we mean any curve homeo-
morphic to a one-dimensional polyhedron which contains no topological
copy of the circle §. It is not difficult to prove that all trees of span zero
are arcs (see [9], p. 200). A curve X is said to be arc-like (tree-like) provided,
for each ¢ > 0, there exists a mapping f: X — Y of X into an arc (a tree)
Y such that

diamf~'(y) < e
for ye Y. Clearly, all subcurves of arc-like or tree-like curves are arc-like

or tree-like, respectively. It is known that all arc-like curves have span
zero (see [9], p. 210).

PROBLEM 1. Let X be a curve such that o(X) = 0. Is X arc-like ? (P 717)

(}) The problems were compiled when the author was visiting the Middle East
Technical University, Ankara, Turkey, in Spring Semester of the academic year
1969 - 1970.
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For a tree-like curve X, the width w(X) of X has been defined by
C. E. Burgess in terms of metric properties of some standard covers of X
(see [2], p. 447). It seems very likely that there exists a relation between
the span and the width of tree-like curves. Let us denote by 2X the col-
lection of all subcurves of X.

PROBLEM 2. Suppose X is a tree-like curve. Is it true that
o(X) = Sup{w(Y): Ye2X} 2 (P 718)

In the case Problem 2 has an affirmative solution, one could guess
a negative answer to Problem 1 (gee [3], p. 479). We recall that a mapping
is called open provided the images of open sets under the mapping are
open.

PROBLEM 3. Suppose X i8 a curve such that X is the image of an arc-like
curve under an open mapping. Is X arc-like? (P 719)

For curves X and Y, a mapping f: X — Y is called confluent provided,
for each subcurve K of Y and each connected component C of f~!(K),
we have f(C) = K. It is known that all open mappings as well as all
monotone mappings which transform the space onto the space are confluent
(see [11], p. 223).

PrOBLEM 4. Suppose X is a curve such that X is the image of an arc-like
curve under a confluent mapping. Is X arc-like? (P 720)

PROBLEM 5. Suppose X is a curve such that X is the image of a tree-like
curve under a confluent mapping. Is X tree-like? (P 721)

An affirmative answer to Problem 4 would, of course, imply an
affirmative answer to Problem 3. It is known that if a curve X is the
image of an arc-like curve under a monotone mapping, then X is arc-like
(see [1], p. 47). Recall that a curve is said to be decomposable provided
it admits a decomposition into two proper subcurves. There exist inde-
composable curves (see [8], p. 204) and it has been proved that Problem 4
reduces to such curves (see [7], p. 389). A partial solution of Problem 5
has been obtained too. Namely, a curve is said to be unicoherent provided,
for each decomposition into two subcurves, their intersection is connected.
A curve X is called hereditarily unicoherent (hereditarily decomposable)
provided each subcurve of X is unicoherent (decomposable). It is known
that all tree-like curves are hereditarily unicoherent, and all images
of hereditarily unicoherent and hereditarily decomposable curves under
confluent mappings are hereditarily unicoherent and hereditarily decom-
posable (see [5], p. 217). Moreover, all hereditarily unicoherent and
hereditarily decomposable curves are tree-like (see [6], p. 20). A curve X
is said. to be acyclic provided each mapping from X into § is homotopic
to a constant mapping. It is known that all tree-like curves are acyclic,
and there exists an acyclic curve which is not tree-like (see [4], p. 81).
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Also, all subcurves of acyclic curves are acyclic and unicoherent (see [8],
p. 354 and 437). It has been proved that all images of acyclic curves
under confluent mappings are acyclic (see [11], p. 230).

For a topological space X, the quasi-component Q(X,x) of X at
a point xeX is the intersection of all closed-open subsets of X that con-
tain 2. A space is said to be totally disconnected provided. each of its quasi-
-components is degenerate. A curve is called rational provided it admits
an open basis consisting of sets with countable boundaries. We now want
to find a relation between the rationality of a curve and the existence
of a totally disconnected subset of it.

LEMMA. If P is a proper subset of a compact metric space X such that
each quasi-component of P 1is zero-dimensional and locally compact, then
dimP < dim(X\ P).

Proof. In the case of compact P, the quasi-components of P coincide
with connected components of P, thus they are all degenerate and P
is totally disconnected and zero-dimensional. Hence, in this case, the
required inequality trivially holds, and we can assume that P is non-
-compact. Let f be a mapping of P into the Cantor set such that f~'f(x)
= Q(P,x) for xeP (see [8], p. 148). It follows that

dim P < dimf(P)+Max {dimf, def P} = Max {0, def P},

where defP denotes the minimum dimension of remainders in compacti-
fications of P (see [10], p. 225). Since P is non-compact, we have

0 < defP < dim(X\P)

which completes the proof of the lemma.

THEOREM. If X is a curve, then the following conditions are equivalent
to each other:
(i) X s rational,
(i) X = PUQ, where P is zero-dimensional and Q is countable,
(ili) X = PuQ, where P is totally disconnected and € is countable,
(iv) X = Pu@, where P has zero-dimensional locally compact quasi-
components and Q is countable.

Proof. The equivalence of (i) and (ii) is well-known (see [8], p. 285).
Since all zero-dimensional sets are totally disconnected, (ii) implies (iii).
Clearly, (iii) implies (iv). If (iv) holds, then X\ P < @ is zero-dimensional
and, by the lemma, so is P. Thus we get (ii) and the proof of the theorem
is complete.

For a separable metric space X and a countable ordinal a, the quasi-
component of order a Q° (X, x) of X at a point z¢X is defined inductively
in the following way. We put Q°(X, ) = X and define

Q*(X,x) =Q[Q"(X,2),2], QX,s) = Q" X,

a<i
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where 4 is a limit ordinal. Thus quasi-components are quasi-components
of order 1 and we have a decreasing transfinite sequence

Q°(X,z) Q' (X,r)>...>Q(X,x) > ...

which consists of closed subsets of X. Consequently, there exists a count-
able ordinal a such that Q°(X, x) coincides with Q**!(X, z), which means
that Q°(X, x) is connected. The countable ordinal

ne(X, @) = Min{a: Q*(X, ») = @**"(X, 2)}

is called the mon-connectivity index of the space X at the point z. Clearly,
the quasi-component of order nc(X, x) of X at x is equal to the connected
component of X to which z belongs. Let £ denote the least uncountable
ordinal. It is known (see [12], p. 367) that if X is a rational curve and
A c X, then

Sup{nc(4, z): ved} < Q.

ProOBLEM 6. Suppose X is a rational curve. Is it true that
(%) Sup{nc(d,x): A c X,zed} < Q7 (P722)

PrOBLEM 7. Suppose X is a rational curve and A = X. Is it true that
the collection of all non-degenerate quasi-components of order 1 of A is
countable ? (P 723)

We say that a curve is Suslinian provided each collection of pair-
wise disjoint subcurves of it is countable. It is known that all rational
curves are Suslinian, all Suslinian curves are hereditarily decomposable,
and there exists a hereditarily unicoherent and arcwise connected Sus-
linian curve(?) which is not rational (see [13], p. 135).

PrOBLEM 8. Suppose X is a Suslinian curve. Does (*) hold ? (P 724)

PROBLEM 9. Suppose X is a Suslinian curve and A = X. Is it true
that the collection of all non-degenerate quasi-components of orders a < 0
of A is countable ? (P 725)

Let us note that positive solutions of Problems 8 and 9 would imply
positive solutions of Problems 6 and 7, respectivery. The class of Sus-
linian curves seems, however, much harder to deal with than the class
of rational curves. This can be seen when one tries to prove a decompo-
sition property as motivated by the theorem above. We say that a space
X is hereditarily disconnected (hereditarily discontinuous) provided each
connected (connected compact) subset of X is degenerate. Thus all to-

(3) In an abbreviated terminology, hereditarily unicoherent and arcwise con-
nected curves are called dendroids, while hereditarily unicoherent and hereditarily
decomposable curves are called A-dendroids. All dendroids are A-dendroids.
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tally disconnected spaces are hereditarily disconnected, and all heredi-
tarily disconnected spaces are hereditarily discontinuous. It is known
that if X is a hereditarily unicoherent Suslinian curve, then there exists
a decomposition X = PuU where P is hereditarily discontinuous and ¢
is countable (see [13], p. 133).

PROBLEM 10. Suppose X is a Suslinian curve. Does there exist a decom-

position X = PuUQ where P is hereditarily discontinuous and Q is count-
able? (P 726)

PROBLEM 11. Suppose X is a hereditarily unicoherent Suslinian curve.
Does there exist a decomposition X = PUQ where P is hereditarily dis-
connected and Q is countable? (P 727)

PROBLEM 12. Suppose X is a hereditam‘ly unticoherent Suslinian curve.
Does there exist a countable subset A = X such that X\ A is not connected ?
(P 728)

Let us point out that there exists a locally connected Suslinian
curve K such that K lies on the plane and, for each countable subset
A < K, the set K\ A is connected (see [15], p. 337). It readily follows
that K is neither unicoherent nor rational. The notion of rationality
for curves has also been investigated in another direction. By the rim-
-type of a rational curve X we mean the minimum, ordinal a such that
X admits an open basis consisting of sets with countable boundaries
whose a-th derivatives are empty. Hence rim-types of rational curves
are countable ordinals, and an arc is the simplest example of a curve
of rim-type 1. It is known that all hereditarily unicoherent rational
curves of finite rim-types contain arcs (see [14]).

ProBLEM 13. Suppose X is a rational curve of finite rim-type n and
m =1,...,n. Does there exist a subcurve Y < X such that Y has rim-
-type m? (P 729)

We say that a curve X is radial provided there exist a point peX
and a collection A of arcs such that p is an end point of each arc from A,
the union of all arcs from A4 is X, and 4,n4, = {p} for each two arcs
Ay, A,eA. Clearly, all radial curves are arcwise connected. It is known
that there exists a radial hereditarily decomposable curve which contains

a topological copy of the circle (see [14]). However, this curve is not
locally connected.

PrROBLEM 14. Suppose X i8 a radial curve such that X is 'hereditarily
decomposable and locally comnected. Is X wunicoherent? (P 730)

PROBLEM 15. Let X be a radial curve such that X contains no topological
copy of the product of an arc with the Cantor set. Is X rational? (P 731)

Added in proof. A negative answer has been recently given to
Problem 2 (W. T. Ingram) as well as to Problems 11 and 12 (H. Cook).

7 — Colloquium Mathematicum XXIII. 1
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Arc-like rational curves have been constructed to provide, for m > 1,
a negative solution of Problem 13 (B. B. Epps, Jr.); it remains unsolved
for m = 1. Also, there has been obtained an affirmative solution of Pro-
blem 5 (B. McLean). 4
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