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0. Introduction. Let X, Y be Banach spaces, and F mapping from
X into Y. In several recent papers [20]-[23], PochoZajev has studied
the concept of normal solvability for non-linear mappings. One may sum
up some his results as follows. Let F be a Gateaux-differentiable mapping.
Assume that one of the following three conditions is fulfilled:

(1) Y is reflexive, F(X) is weakly closed and
Ker[F'(u)]* = (0) for each ue X;

(2) Y is uniformly convex, F(X) is closed and
Ker[F'(u)]* = (0) for each ueX;

(3) D(F) is a linear set in X, Y is a uniformly convex Banach space,
F: D(F)—~X, F(D(F)) is closed and

F'(u)(D(F)) =Y for each ue D(F).

Then the image of F is all of Y .
Several surjectivity theorems for a Fréchet-differentiable and weakly
continuous mapping with weakly closed range and satisfying the condition

ICE" ()T 0ll = E(w) |loll,

where k(%) > 0 for each ue X, ve Y*, have been established by Kadurov-
skij [13]. Recently, Browder (see [2] and [3]) has considerably sharpened
and generalized results of PochoZajev and Kaéurovskij by the use of
a different method. Assertion (3) of PochoZajev has been extended for
an arbitrary Banach space Y by Zabrejko and Krasnoselskij [32], while
Dane8 [6] has derived a geometrical theorem which can serve as a uni-
fication of the initial argument for both papers [2] and [32].

The purpose of this paper is to derive new surjectivity, existence,
and fixed-point theorems for non-linear maps and non-linear operator



254 J. KOLOMY

equations. Theorems derived in Section 2 are related to those of PochoZajev,
but we do not employ the concept of differentiability of maps. Our method
is based on local approximation arguments of a given map by a suitable
p-positively homogeneous operator and on the minimization properties
of certain functionals. In Section 3 new existence theorems concerning
solvability of non-linear equations are established. Moreover, the method
allows to obtain, among others, new fixed-point theorems for weakly
continuous maps and weak local contractions. In comparison with the
Banach contraction principle we need not assume that X is complete,
@ + M c X, M is closed, and F is a contraction mapping of M into M.
Let us remark that our hypotheses are different from those of Banach
and the authors cited below. Results are related to those of Edel-
stein [7], Belluce and Kirk [1], Kirk [15], Dane8 [6], Reinermann [26]
and others.

1. Terminology and notation. Let X, Y be normed linear spaces,
id an identity map of X, and F, a set of real numbers. We use the symbols
— and — to denote the strong and weak convergence, respectively.
Throughout this paper by weak closedness, relative weak compactness
and weak compactness we mean respective notions defined by means of
sequences. Recall that pe X is said to be an internal point of a subset
W < X if, for each ue X, there exists an ¢ >0 such that

10| < e =>p+oueW.

The set of all internal points of W is denoted by Int,W. By B,(u,)
we denote an open ball centered about u, with the radius 4. For
V < X, 0V is the boundary of V and V denotes its closure in X. A mapping
F: X—>Y is said to be

(1) p-positively homogeneous if F(tu) = t*F(u) for each ue X and
t>0, where p is a positive number;

(2) weakly continuous at uye X if

Up— Uy => F(u,) —F(u);
(3) demicontinuous at w, if
U, —> Uy => F(u,) —=F(u,).

A functional f is said to be
(a) weakly lower-semicontinuous at u, if wu, —wu, implies

Fup) < lim f(uy,);

n—>00

(b) quasi-convex on a convex set if

u,ve M,2e[0,1] :>f(AI‘+(1_}')v) < max [f(u), f(v)].
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2. Normal solvability. The following two lemmas will be useful
throughout the paper. The first one is an extension of a classical result,
while the second was proved in [17]. Both were applied in [17] in investi-
gations of quasi-convex functionals. We present their proofs here for the
sake of completeness.

LeEMMA 1. Let X be a normed linear space, @ # M a subset of X, and
f a real function on M. Then f is weakly lower-semicontinuous on M iff
E(c) = {ue M: f(u) < c} is weakly closed in M for each ce E,.

Proof. Suppose that f is weakly lower-semicontinuous on M,
u,e E(c), u,—u,, and u,e M. Then

fluy) < lim f(u,) < ¢

and, therefore, u,e E(c). Conversely, let (u,)e M be such that u,—u,
and w#ge M. Then there exists a subsequence (u, ) of (u,) such that

f(unk) _>h_m f(un) = a.

Assume that a < f(%,). Let § be a constant such that a < 8 < f(u,).
Then there exists an integer k, such that k¥ > k, implies f (#,,) < . Hence
Un, € B(B) for k= k,, and since u, —uy, it follows from our hypothesis
that f(u,) < B, a contradiction.

LeEMMA 2. Let X be a normed linear space, @ + M < X a subset of X,
and f a real weakly lower-semicontinuous functional on M. Suppose that
the set E(a) = {ue M: f(u) < a} is relatively weakly compact in M for some
ae E,. Then f is bounded from below on M. Moreover, if E(a) # 9, then
there exists a point uy e E(a) such that

fluy) = Inf{f(u): ue M}.

Proof. If E(a) = O, then the first assertion of the lemma is obvious.
Suppose that E(a) # 9 and that F(a) is relatively weakly compact for
some ae E,. If f were not bounded from below on M, there would exist
a u,e M such that f(u,) < —n for n = 1,2, ... There exists an integer
n, such that n > n, implies f(u,) < a. Hence u,¢ E(a) for each n > n,.
Since the set E(a) is relatively weakly compact in M, we infer for a sub-
sequence (%) that u, —p, and p,e M. Moreover, by Lemma 1, E(a)
is weakly closed in M. Therefore, p,e E(a). By the hypothesis,

f(po) < lim f(u, ) = lim f(u,) = — oo,
k—c0 k—o0

a contradiction.
Setting d = inf{f(u): ue M}, we have d < a. If d = a, then ue E(a)
implies f(#) = a and f attains its lower bound on E(a). If d < a, we choose
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a number ¢ > 0 such that d+ ¢ < a. There exists a sequence (v,,) e M such
that f(v,) >d and, therefore, f(v,)<d-+ ¢ for each n>n,. Hence n>n,
= v, ¢ F(a). Passing to a subsequence, we infer that v, —u, and u,c E(a).
Then

d < f(u) < lim f(v,,) = lim f(0,,) = d
k—»o00 Nn~»00

and this completes the proof of our lemma.

Let S be a closed set in a Banach space X. Then X is said {0 have
property (E) if the set of all points ue¢ X which have a nearest point s
in 8, that is, such that

ll —sl| = inf{jjlu—o]): ve 8},
is dense in X.

In his remark, Swaminathan [28] has extended the PochoZajev
theorem for range spaces having property (E) instead of uniformly convex
spaces. It has been proved that the following Banach spaces have prop-
erty (E):

(a) uniformly convex Banach spaces (Edelstein [8]);

(b) (2R)-Banach spaces (or 2-fully convex Banach spaces of Fan
and Glicksberg [9]), i.e. the Banach spaces which satisfy the following
condition (H): if (#,) is such that |ju, + %,|| =2 as m, » — oo, then (u,)
is a Cauchy sequence;

(c) uniformly smooth Banach spaces satisfying condition (H): if
u,—u and ||u,| — |lu|, then w, —u.

The last two assertions have been proved by Wulbert [31]. Let us
remark that uniform convexity of Banach space X implies (2R)-property
of X and (2R) implies (H). Moreover, each Banach space satisfying one
of conditions (a), (b) or (c) is reflexive.

THEOREM 1. Let X be a normed linear space, and F: X—X a mapping
such that, for some A >0,

(A) of u,ve X, u # v, then
|l —v—A(F(u)— F ()| < llu—].
Let one of the following three conditions be fulfilled:
(1) F is weakly continuous,
E(a) = {ue X: ||F(u)]| < a}
18 relatively weakly compact for each a =0, and F(0) = 0;
(2) X s reflexive and F(X) i3 weakly closed;

(3) a Banach space X has property (E) and F(X) i8 closed.
Then F is surjective.
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Proof. Assume (1) and let v,e X, v, = 0, be arbitrary (but fixed).
Define a mapping G: X—-X by

G(u) =u—AF(u)+4v,, uelX,
and a functional f: X—E, by
flu) = |[A(F(w)—v,))||, weX.

Then f(u) = ||lu —G(u)|, e X, and f is weakly lower-semicontinuous
on X, because G is weakly continuous. Set

A(e) = {ue X: f(u) < c}.
Since 0e A (A]lv,), A (JIAvyll) # O. If ue A(A|vy)|), then
[A(F () —wo)|| < Allwoll

and hence ||F(u)|| < 2|jvy|l. Therefore, A (4|jv,l]) = E(2|[vol]). Since E(2 |v,ll)
is relatively weakly compact, also the set A (1||v,||) is. Moreover, f is finite.
By Lemma 2, there exists a u*e E(2|v|]) such that

f(u*) = inf{f(u): ue X}.
Suppose that f(u*) # 0, i.e., u* % G(u*). According to (A),
fl@(u*) = ||G(u*) — G (G (u*))|| < llu*— G (u*)]| = f(u*),

a contradiction. Hence #* = @(u*) and F(u*) =v,. Since v, was an
arbitrary point, F(X) = X.

Assuming (2), for a given we X there exists, by PochoZajev’s lem-
ma [20], u*e X such that

f(u*) = inf{||A(F (u) —w)||: ue X}.

In the same way as in (1) we infer that F(u*) = w. Assuming (3),
we conclude that, for a given point ve X, there exists a sequence (v,)e X
such that v, —v and each v, has a nearest point in #(X). Hence there
exist points u,e X such that

| B (%) — 0,|| = inf {||F(u)—v,||: we X} for each n =1,2,...

But (A) implies that F(u;) =v,, » =1,2,... Hence v,¢F(X).
Since v, —v and F(X) is closed, ve F(X). Therefore, F(X) = X.

THEOREM 2. Let X, Y be normed linear spaces, F: X—>Y a given
mapping, and D: X—Y a suitable p-positively homogeneous mapping of

X onto Y. Suppose that for each point we X there exists a set U(u) such that
ue Int,U(u), a mapping G,,: X—Y, and a constant a, > 0 such that

I (v) — F(u) — Gy (v — )| < ay 1D (v —u)|

7 — Colloquium Mathematicum XXIX.2
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for each ve U(u). Suppose that there exists a set W < X with 0e Int,W
and such that for each we X there exisis an ¢, (0 < ¢, <1—a,) satisfying

|6u(2) — D(2)| < &, ID@)|  for each ze W,

Moreover, let one of the following three conditions be fulfilled:
(a) F 18 weakly continuous, F(0) = 0, and

E(a) = {ue X: |F(u)|| < a}

18 relatively weakly compact for each a > 0;
(b) Y reflexive and F(X) is weakly closed;
(¢) Y is complete, Y has property (E), and F(X) is8 closed.
Then F(X) =Y.
Proof. Assuming (a), take an arbitrary v,e Y, v, # 0. Then f: X—E,,

where f(u) = ||[F'(u) — || and ue X is weakly lower-semicontinuous on X.
The set

A([looll) = {we X: f(u) < llwgll}

is weakly closed in X and it is a subset of weakly compact set
E(2||vel]). Hence A (]|vy)l) is weakly compact in X. Moreover, A (|[v,]l) # 9,
since ¥ (0) = 0. According to Lemma 2, there exists a u*e¢ X such that

flu*) = inf{f(u): we X}.

Assuming (b) (here and also in (c) we need not suppose that v, # 0),
in virtue of PochoZajev’s lemma [20] there exists a u*e X such that

f(u*) =inf{f(u): ue X}.

Suppose (c¢); in view of property (E) of Y, we conclude that there
exist v, e ¥ and u,e¢X such that v,—wv, and

I1F () — vl = Inf{|F (w) — v,]|: we X}
for cach fixed » =1,2,...

It is sufficient to prove that f(u*) = 0 in cases (a) and (b), and that
F(uy) =v,, n =1,2,..., in case (¢). For the proofs of these conditions
are almost the same, we shall show only (a).

If f(u*) = 0, then v, = F(u*). Suppose that f(u*) # 0. Since D is
onto Y, there exists a point #e X such that D(&) = v,— F(u*). By our
hypothesis, there exist a set U(u*) with wu*eInt,U(u*), a mapping
G,.: XY, and a constant a,. >0 such that

(1) 1 (0) —F (u*) — Gys (v — u*)|| < aye [ D (v —u*)|

holds for each ve U(u*). Moreover, there exists a subset W < X with
0 Int,W and such that for the point «* there exists an e,. > 0 satisfying

(2) 1Gus (2) — D(2)]| < 4 [ID(2)l]
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for each ze¢ W, where ¢,.+a,. <1. Since u*eInt,U(u*) and 0e Int, W,
u*+tyfie U(u*) and t,@ie W for sufficiently small ¢, > 0. Therefore, (1)
and (2) imply that
(3) I (u*+t,@) — F(u*) — Gy (3 8)]| < aye |D (4, 8)]| = aye 87 |ID (@),
where a,.+ ¢, <1, and
(4) 1Gus (8 &) — D (@] < &4e LD (B B)l| = &40 85 D ()],
(5) |lF (u*) — vy + D(ty @)|| = || —D(&)+ D(t, @)l
= |D(%) — Dt ®)|| = (1 —17) |l D(@)]|.
Furthermore, by (3), (4) and (5) one gets

J(u*+4, @) = ||F(u*+1,@&) — v,
< I (u*+ by @) — F (u*) — Qe (8, @) +
+ |F (w*) — vy + D (ta B)l| + |G ys (4 &) — D (4, @)

< [1—(1—aye — ) GD (@) < | D(@)]

=f('“'*)’
since 0 < ayete,<1, 0<it <1, and D(#) # 0. This contradiction
gives D(#) = 0. Hence f(u*) =0 and F(u*) = v,. Since voe ¥, vy # 0,
and F(0) = 0, we conclude that F(X) = Y. This completes the proof.

Remark. The assumption of Theorems 1 and 2 that

E(a) = {ue X: |[F(u)| < a}

is relatively weakly compact for each a > 0 is satisfied, for instance, when
X is a reflexive Banach space and F is a p-positively homogeneous mapping
on X such that ||F(u)|| > m > 0 for each we X, |lu|| = r, where r is some
positive number.

Setting G, = D = @ for each ve X in Theorem 2, we obtain the fol-
lowing

COROLLARY 1. Let X, Y be normed linear spaces, @: X—Y a suitable
p-positively homogeneous mapping of X onto Y, and F: XY a given
map. Suppose that, for each point ue X, there exist am open meighborhood
V(u) of w and a constant a, (0 < a, < 1) such that

1 (v) — F(u) — G(v— u)|| < a,llG(v—u)|

holds for each ve V (u). Let one of the three conditions (a), (b) or (c) of Theo-
rem 2 be fulfilled.

Then F(X) =

Definition 1. Let X, Y be normed linear spaces, @ #* M an open
subset of X, and 4: X—Y a mapping. A mapping #: MY is said to
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be an A-weak local contraction on M (an A-local contraction on M) if,
for each point u,e M, there exist a neighborhood V (u,) of %, and a constant
ay, (0 < a,,<1) such that V(u,) =« M and

1P (%) — D ()| < @y |4 (4 —uy)|

for each wue V(uy) (|P(v)—P(w)| < ay ll4(v—w)| for each v, we V(u,)).
In the case X = Y and @ = id, @ is called a weak local coniraction
on M (a local contraction on M).
In comparison with Definition 1 of [16], we need not assume here

that V(u,) is convex and bounded, and that V(u,) = M. Our concept
generalizes the notion of Edelstein [7] and it includes a wider class of
mappings.

COROLLARY 2. Let X, Y be normed linear spaces, A: X—Y a linear
mapping of X onto Y, and @: X—Y an A-weak local contraction on X.
Suppose that one of the three conditions (a), (b) or (c) of Theorem 2, where
F = A+ D, is fulfilled. Moreover, tn case (a), it is assumed that A is continuous.

Then (A+P)(X) =Y.
It is clear that the assumption that @ is an A-weak local contraction

on X can be replaced by the following condition: for each u,e¢ X there
exist a neighborhood V, (0) of 0 and a constant a, €[0,1) such that

19 (2o +h) — D ()|l < @y, 14 (B)]]

holds for each he V, (0).
Setting @ = L, where L: X—Y is a linear mapping, we obtain the
following

COROLLARY 3. Let X, Y be normed linear spaces, and A: X—Y,
L: X—Y linear maps, where A is onto Y. Suppose that ||L(u)|| < a|ld (w)|
for each ue X and some ae[0,1). Let one of the two following hypotheses
hold:

(1) A, L are continuous amd {ueX: |(A+L)u| <c} is relatively
weakly compact for each ¢ > 0;

(2) XY <s reflexive and (A + L)(X) s closed.

Then (A+L)(X) =Y.

This assertion says that under the assumptions of Corollary 3 the
equation (4 + L)u = v has at least one solution for each ve Y. For results
concerning normal solvability and perturbation theory for linear closed
operators see Gohberg and Krein [10], Goldberg [11], Przeworska-Rolewicz
and Rolewicz [24], and Kato [14].

The simplest conditions (see [29]) which assure the closedness of
the range (4 + L)(X) are the following: X is complete, 4 + L is closed
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and has a continuous inverse (4 -+ L)~'. Some necessary and sufficient
conditions under which a closed operator has a closed range are given
in Chapter IV of [11].

2. Solvability of non-linear equations and fixed-point theorems.
In this section we derive some general theorems concerning solvability
of non-linear equations and, as their corollaries, new fixed-point theorems.

THEOREM 3. Let X, Y be normed linear spaces, 0e M = X an open
subset, F': M—Y a given mapping, and D: X—Y a suitable p-positively
homogeneous map of X onto Y. Suppose that there exists a set @ + N <« X
such that N« M, N = Int,N, and that

E(c) = {ue N: |F(u)ll <o}

is relatively weakly compact in N for some ¢ > 0. Assume that for each point
ue B(c) there exist a set V(u) with weInt,V(u), V(u) =« M, a constant
a,=>0 and a mapping G,: X—Y such that

(v) |1F (0) — F(u) =Gy (v —u)|| < o [|D(v—u)]|

holds for each ve V(u). Moreover, assume that there exists a set W with
0e Int,W and such that for each ue E(c) there exists an ¢, (0 < ¢, <1—a,)
satisfying

|G (w) — D(w)|| < ,||1D(w)]|  for each we W.

If either (i) F is weakly continuous on N, or (ii) N is convex, F is de-
micontinuous on N, and yw(u) = ||[F(u)|| s quasi-convex on N, then there
exists a u*e N such that F(u*) = 0.

Proof. Assuming (i), we infer that ¢ is weakly lower-semicontinuous
on N. Supposing (ii), we see that y is lower-semicontinuous on a convex
set N. In view of quasi-convexity and lower-semieontinuity of p, the set
E(d) = {ne N: p(u) < d} is convex and closed in N for each d > 0. Hence
E(d) is weakly closed in N. Indeed, if (u,) < E(d), ,—u,, and %ye N,
then, in virtue of Mazur’s theorem, there exists a sequence (v,) of finite
convex combinations of u, such that v, —u,. Since v,¢ E(d) and E(d)
is closed in N, u,e¢ E(d). By Lemma 1, y is weakly lower-semicontinuous
on N. According to Lemma 2, there exists a point #*e F(¢) = N such that

p(u*) = inf{y(u): ue N}.

Since D is onto, there exists a #e X such that D(#) = —F(u*).
Since N = Int,N, there exists a number #, >0 such that u*-#, % N.
Repeating the argument of the proof of Theorem 1, we conclude that
p(u*) =0, i.e., F(u*) = 0. This proves our theorem.

If, in Theorem 1, we set G, = D, ¢, = 0 for each ue M and W =@,
then it is clear that we need not assume that 0e M.
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COROLLARY 4. Let X, Y be normed linear spaces, @ #+ M am open
subset of X, F: M—Y a given mapping, and G: X—Y a suitable p-posi-
tively homogeneous map of X onto Y. Suppose that there exists a set @ # N
c X such that N =« M, N = Int,N, and that

E(c) = {ue N: |F(u)]| < o}

18 non-votd and relatively weakly compact in N for some ¢ > 0. Assume that
for each point ue E(c) there exists an open meighborhood V (u) of u, a con-
stant a, (0 < a, <1) such that V(u) «c M and that

|F(v) — F(u) — G(v —u)|| < a,]|G (v —u)|

holds for each ve V(u). If either (i) F 18 weakly continuous on N, or
(i) N is conver, F is demicontinuous on N, and y(u) = |F(u)| i8 quasi-
-convexr on N, then there exists a u*e N such that F(u*) = 0.

COROLLARY 5. Let X, Y be mormed linear spaces, @ + M <« X an
open subset, A: X—Y a linear continuous map of X onto Y, &: M—>Y
an A-weak local contraction on M, QD # N < M a subset in X, N = Int,N.
Suppose that f(u) = ||A(u)+ DP(u)|| i8 weakly lower-semicontinuous on N.
If E(c) = {ue N: f(u) < ¢} is relatively weakly compact in N and non-void
for some ¢ = 0, then there is a point u*e N such that A(u*)+ DP(u*) = 0.

Setting X = Y and 4 =id, we obtain the following fixed-point
theorem for weak local comntraction maps.

COROLLARY 6. Let X be a mormed linear space, @ #+ M < X an open
subset, D: M—>Y a weak local contraction on M. Suppose there exists a set
@ #Nc M, N =1Int,N, such that {ue N: |ju— DP(u)| <c} is mon-void
and relatively weakly compact in N for some ¢ = 0. If either (a) D is weakly
continuous on N, or (b) N is convex, D is demicontinuous on N, and y(w)
= |lu— D(u)| ©8 quasi-convex on N, then there exists a point u*e N such
that u* = @(u*).

Remark. In comparison with the Banach contraction principle
we need not assume in Corollary 5 that X is complete, M is closed, and @
is a contraction map of M into M. Our conditions are quite different;
compare also Edelstein [7], Rakotch [25], Nadler, Jr. [19], and Wong [30],
where the Banach contraction principle was extended for single-
valued maps and multi-valued local uniform contractions in complete
e-chainable metric spaces.

THEOREM 4. Let X, Y be normed linear spaces, @ +#* @ an open subsel
of X such that Q is weakly compact, and F: @—Y a given mapping. Suppose
that for each point u,e @ there exist a p, -positively homogeneous mapping
G, of X onto Y, a neighborhood V (u,) of u,, and a constant a, [0, 1)
such that V(u,) = Q and that

(3) ' () — F' () — Gy (4 — o) | < 0y [1Gy (4 — )|
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holds for each ue V (u,). Assume that there is a point voe Q@ such that f(v,)
< f(v) for each ve 3Q, where f(v) = |[F(v)|, ve @. If either (a) F is weakly
continuous on @ or (b) @ i8 convex, F is demicontinuous on @, and f is quasi-
convez: on Q, then there is a point u*e Q such that F(u*) = 0.

Proof. Assuming (a) or (b) we conclude that f is weakly lower-semi-
continuous on Q. Since @ is weakly compact, there exists a point u*e @
such that

f(u*) = inf{f(u): ue@}.

Since f(v,) < f(v) for each ve 0Q and v,¢ @, we infer that u*e Q. Using
the arguments similar to those of the proof of Theorem 2 (we put here
&, = 0 for each ue¢@Q), we obtain f(u*) =0, i.e., F(u*) =0.

Now, similarly as before, one can deduce several consequences of
Theorem 4. Here we derive only two simple assertions.

COROLLARY 6. Let X, Y be mormed linear spaces, X reflexive, D:
Bg(0) >Y a weakly continuous mapping, and A: X—Y a linear continuous
operator of X onto Y. If @ is an A-weak local contraction on Bgr(0) and

19O)| < |14 (u)+P(w)|  for each uedBg(0),

then A(u*)+ P(u*) =0.

PROPOSITION 1. Let X, Y be normed linear spaces, X reflexive, @ + C
c X aweakly closed set, M > C an open subset of X, D: M—Y a weakly con-
tinuous mapping, and A: X—Y a linear continuous operator of X onto Y.
If @ is an A-weak local coniraction on M and ||A(u)+ D(u)||—>+ oo for
each ue C, ||u||— + oo, then there is a point u*e C such that A (u*)+ @(u*) = 0.

Setting in Corollary 6 and Proposition1 X = Y, A =id, 4 =T —id,
respectively, where T': XX is a linear continuous operator of X into X
and T —id is into, we obtain new fixed-point theorems for the mapping
@ and for the sum of operators T, @, respectively.

Let us remark that in Theorems 3 and 4 and in their consequences
the mappings @,, D and G need not be defined on the whole space X.

Recall that theorems of Section 2 and their consequences give suf-
ficient conditions under which a point «*, at which f(u) = ||F(u)| takes
its minimum value, is simultaneously a solution of the equation F(u)
= 0. Since there are many approximate methods (see, for instance, [12])
for localization and finding points at which non-linear functionals take
its minimum value, these computational methods provide us also with
approximate solution of the equation F(u) = 0.

Furthermore, it is obvious that assumptions (y) and (3) (or that
@ is an A-weak local contraction) need not be satisfied on M or @ (or on
Bg(0)), but only in some neighborhood of the point u*. Setting in Corol-
lary 6 X = Y and 4 = —id, we obtain the following assertion:
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Let X be a reflexive Banach space, and D: Bg(0) —X a weakly continuous
mapping Such that

1D(0)]| < |lu—DP(u)|]| for each ue 0Bg(0).

If |D(u*+h)—D(u*)|| < a|h] for some ac[0,1) and all he V(0),
where u*e Bp(0) 18 such that

f(u*) = inf{|lu — P(u)l: ue Bg(0)},

and a neighborhood V (0) of 0 satisfies u*+ V(0) < Bg(0), then u* = D(u*).

The last hypothesis can be replaced by the following one: @ is Fréchet-
-differentiable at #* and ||®'(u*)| = a < 1.

PROPOSITION 2. Let X be a normed linear space, @ # M a subset of
X, and F: M—-M a mapping such that |F(u)—F(v)]| < |lw—v| holds
for each w,ve M. If either (a) X is reflexive and (id —F)(M) vs weakly
closed, or (b) (id —F) (M) is weakly compact, then there is a unique point
u*e M such that F(u*) = u*.

Proof. Assume (a). We shall follow here the argument of Pocho-
Zajev [20]. Set

d = inf{jju— F(u)||: ue M}.

Then there is a sequence (u,) =« M such that |u, —F(«,)|| > d. Since
X is reflexive and (uﬂ—F(un)) is bounded, passing to a subsequence we
infer that u,,k—F(unk)—\w and we (id—F)(M). Hence there exists
a u*e M such that u*— F(u*) = w. It is clear that |u*—F(u*)| =d.
If u* # F(u*), then

| F (w*) — F(F (u¥))|| < |u*—F(u*)]| = d,

a contradiction. Uniqueness of u* is obvious.
Assuming (b), there exists a sequence v,¢ M such that

v, — F (v,)| > @ = inf{||F(u) —u|: we M}.

In view of the weak compactness of (id — F)(M), there is a subse-
quence (v, —F(u,,)) such that

Un, — F (Uy,) ~wye (id — F)(M).

Now we proceed similarly as above.

PROPOSITION 3. Let X be a normed linear space, M + @ an open subset
of X, and F: M—>X a weak local contraction on M. If either (a) X 18 re-
flexive and (id — F)(N) is weakly closed for some subset N, @ # N c M,
N =Int, N, or (b) X is a Banach space with property (E) and (id — F)(W)
18 closed for some set @ #* W < M, W = Int,W, then there exists a point

u*e M such that u* = F(u*).
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Remark. In comparison with the Browder result [4] we do mnot
assume in Propositions 2 and 3 that M is a convex, closed and bounded
subset of X, but we put stronger conditions on the mapping F and
the space X. A preliminary report about a part of these results is contained
in [18].

Added in proof. We pointed out that the concept of the A-weak
local contraction (Definition 1) generalizes the notion of Edelstein [7].
Let us also remark that our concept is more general than that of Kirk’s
generalized contraction. Compare W. A. Kirk, On nonlinear mappings
of strongly semicontractive type, Journal of Mathematical Analysis and
Applications 27 (1969), p. 409 -412; Mappings of generalized contractive
type, ibidem 32 (1970), p. 567 -572; Fixed point theorems for monlinear
nonexpansive and gemeralized contraction mappings, Pacific Journal of
Mathematics 38 (1971), p. 89-94.
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