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1. Introduction. Let 2 = (-1,1) and
(10)  p(z)=(1-2)*(1+2) and p(z) = (1- )+ (1 +2)P*
where —1 < @ < 0 and -1 < # < 0. With Du = du/dz, we call
(1.1) —D[p(z)A(z,u, Du)] = p(z)F(z,u), z€ N

a quasilinear Jacobi differential equation.
In order to deal with the quasilinear differential equation (1.1), we in-
troduce the two pre-Hilbert spaces:

(1.2) c={uec®®): [ur< o}
2

with (u,v), = [, uvp;

13) C!,= {u e CO@MNCY(R): [ [I1Dul*p+u?p] < oo}
2

with (u,v)p, = [o[DuDvp + uvp] where 2 = [-1,1].

L? will designate the Hilbert space one gets by completing C9 using the
method of Cauchy sequences with respect to the norm ||, = (u, u)},/ ? and
Hj , will designate the Hilbert space that one gets by completing C! , with
respect to the norm ||u|,,, = (v, u):,,/,?.

For the A appearing in (1.1), we shall make the following assumptions:

(A-1) A(z,t,£) : 2XRXR — R and satisfies the Carathéodory conditions
(i.e., A(z,t,€) is measurable in 2 for every fixed (t,£) € R x R and is
continuous in (2,£) for a.e. fixed z € 2).

(A-2) 3k > 0 and ¢; > 0 with h € L2 such that
|A(z,t,6)] < h(z) + c1(t® + €2)/2  forae.z€ 2.
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(A-3) 3 a positive constant ¢o and nonnegative function Z € L (i..,
fa 1Z]p < ) such that

A(z,t,6)€ 2 colél® — Z()
for a.e. z € 2 and V(¢,6) € R x R.
(A-4) [A(z,t,8) — A(z,t,€))(E-¢') > 0 for ae. z € 2, Vt € R, and
V€, &' € Rwith £ #¢'.

For F(z,t) in (1.1), we shall suppose F(z,t) = f(z) — g(z,t) where
fE€ L} and g(z,t) meets the following conditions:

(g-1) g(z,1) satisfies the usual Carathéodory condition;
(g-2) for each 7 > 0, 3¢, € L} such that

l9(z,t)| < ((z) for |t| <randae z€n.
We observe, in particular, that if g(z,t) € C°([-1,1] x R), then g meets

(g-1) and (g-2). With A meeting (A-1)-(A-4), g meeting (g-1), (g-2) and
fe L},, we shall say u € H},,p is a weak solution of the equation

—D[pA(z,u, Du)] + g(z,u)p = f(z)p
if the following holds:

(1.4) pr(a:,u,Du)Dv+ fg(z,u)vp': f f(z)vp VveH},.
2 Q Q
With p and p as defined in (1.0) and -1 < o, < 0, we shall show in
our second lemma that H} , is continuously imbedded in L(£2) (actually
in C°(2) where 2 = [-1,1]). Hence if u,v € Hj ,, it follows from (A-2)
and (g-2) that each of the integrals in (1.4) is well defined.

The general one-sided result concerning (1.4) that we shall establish in
this paper is the following:

THEOREM 1. Let 2 = (-1,1) and let p and p be given by (1.0) with
-1 < a,B8 < 0. Suppose that A satisfies (A-1)-(A-4), g satisfies (g-1) and
(g-2), and that f € L}. Suppose furthermore that

(1.5) tg(z,t)>0 forteR anda.e. z€ N,
(1.6) [ fe=o0.

: 2
Then 3u € H,l,,p which is a weak solution of the equation

—D[pA(z, u, Du)] + g(z,u)p = f(z)p,
that is, (1.4) holds Vv € H} ,.
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We observe that g in the above theorem is quite genera.l except for the
one-sided condition (1.5). In particular, g(z,t) = tet' + tsin?z satisfies
(g'l)’ (g'z)a and (1 5)

As a corollary to the above theorem, we have the following quasilinear
result which is both necessary and sufficient.

THEOREM 2. Let §2, p and p be as in Theorem 1. Suppose that f € Ll
Then a necessary and sufficient condition that Ju € H, 1 , such that u is a
weak solution of

(1.7) —D[pA(z,u, Du)] = f(z)p
is that
(1.8) [ fo=0.

7

It is clear that by taking g(z,t) = 0 the sufficiency condition of Theorem
2 is an immediate corollary to Theorem 1.

To establish the necessary condition in Theorem 2, suppose u € H ;, p 18
a weak solution of (1.7). Take v = 1 in (1.4) and the proof follows.

For an extension of Theorem 1 above, see Remark 2 in §4.

2. Fundamental lemmas. The first lemma we prove is the following;:

LEMMA 1. Letv € H, , and set I, = [, p~'. Suppose

(2.1) f vp=0.
N
Then
(2.2) |v(z)| < I||Dv||, for a.e.z€ R2.

From the definition of H, 1 » to establish the above lemma, it is sufficient
to show that (2.2) holds for v € Cp ,- To do this, we see from (2.1) that
for z € (-1,1), v(z) = b;! fn[v(z) - v(t)]p(t) dt where b, = (1,1),. Since
v € CY(2),

z
(2.3) o(z) - v(t) = [ Du(s)ds forz,t€ 2.

t
The observation that p~! € L!(f2) joined with (2.3) gives in a standard
manner (2.2) where | Dv||2 = [, |Dv|?p.

Remark 1.Ifv € H} ,, then 3w € C°(2) such that v(z) = w(z) a.e.
in §2.

Remark 1 follows easily from Lemma 1.
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LEMMA 2. Let v € H} ,. Then |v(z)| < L||Dv|, + b;1/2||v||p for a.e.
z € 2 where b, = (1,1),.

Setting 2(z) = v(z) — b;(v,1)p, we see that Lemma 2 follows from
Lemma 1.

LEMMA 3. H} , is compactly imbedded in L2.

The proof of Lemma 3 is an immediate consequence of Remark 1, Lemma
2, the well-known Ascoli-Arzela theorem, and the following fact: if {v,}32,
is a sequence in C';, , With f Q | Dv,|?p < K Vn, then the sequence is uniformly

equicontinuous on f2.

At this point, we introduce the Jacobi polynomials P2:#(z). In particu-
lar, P2+#(z) are polynomials of degree n that satisfy the equation

(2.4) —D[pDP2Pl=n(n+a+ B+ 1)pP>*
and are usually normalized so that P2#(1) = ("t*). Jacobi polynomials
are dealt with in the literature in various places, particularly in [3], [10], and
[4, Chap. 8].
As a consequence of (2.4), we see that
(2.5) (Pf,v)p,o = (PP v), = n(n+ a+ B+ 1)(P3P,v), Vve H;.p .
We shall set
(2.6) on(2) = PR P(2)/ |1 PR, -
Therefore ||¢n]|, = 1 and we take it as well known (see [10] or [3, pp. 31-32
and 39-40]) that

(2.7) {®n}320 is a complete orthonormal system in L?
with o a positive constant.

Also, we set

(2.8) An=n(n+a+p+1)+1 forn=0,1,2,...,
and observe from (2.5), (2.6), and (2.8) that
(2.9) (#nsV)p,p = Anpn,v), Vv € H;,p .

From (2.8) we see that A\,, < A,41 and Ao = 1. Consequently, it follows from
(2.7) and (2.9) that

(2.10) {pn/A/2}2, is a CONS in H} .
For convenience of notation, we introduce the two-form
(2.11) Q(u,v) = f pA(z,u, Du)Dv
2

defined for u,v € H, ,.
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LEMMA 4. Let n be a positive integer, and let S,, be the subspace of H},'p
spanned by {pk}r-o- Assume the hypotheses of Theorem 1. Then Ju, € S,
such that

(2.12) Q(un,v) + f g(z,un)vp + n " uy,v), = f fop Vv e€ES,.
Q2 0

To establish the above lemma, we let ¥ = (7o,...,7s) € R**! and using
the summation convention set

(2.13) Gr(7) = Qrivirex) + [ 9(z,750i)ekp
2

+n Y vi05 )0 = [ fore,
[f]

for k=0,...,n. Then with G(y)=(Go(7),...,Gn(7)) we obtain from (2.7)

(2.14) G(7)-7=Q(rieimeer) + [ 9(,7505)(1epr)p
n

+07 2= [ fuepn)p.
n

From (A-3), (2.16), (1.5), and (1.6), we see from (2.14) that
(2.15) G(1)- 72 - nf Zp+ 07 P - Flk)x,
where Z € L] and

(2.16) f(k) = nf forp.

It is clear from (2.15) that
(2.17) 3ry >0 suchthat G(y)-y>0 forl|y|>r.

It is also clear that G € C°(R"*!) for k = 0,...,n. Hence it follows from
(2.17) and [7, p. 18] that Iy# = (1¥,...,7#) such that Gx(y#) = 0 for
k=0,...,n. Weset u, = 7}*(,0]- and find from (2.13) that

(2.18) Qun, ox) + [ 9(z,ua)prp + 0 (un, 00), = [ fiorp
n n

for k =0,...,n. From (2.11) we see that Q is linear in its second variable,
i.e., as a function of v. Since every v € S, is a finite linear combination
of {¢x}r_0, (2.12) is an immediate consequence of (2.18), and the proof of
Lemma 4 is complete.
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3. Proof of Theorem 1. To prove Theorem 1, we invoke Lemma 4
and obtain a sequence of functions {u,}32, such that

(3.1) u, € S, and u, satisfies (2.12) for n = 1,2,...
We claim
(3.2) 3K; >0 suchthat |lus|lp, < K1 Vn.

Suppose (3.2) is false. Then there exists a subsequence (which, for ease of
notation, we take to be the full sequence) such that

(3.3) lim [lun|p,, = oo.

n—0o0

To show that (3.3) leads to a contradiction, we set
(3.4) Wy = Un(0)po and 2, = u, — wy,

where %,(0) = (un, ¢o),. _
We take v = 4, in (2.12) and deduce from (1.5), (1.6), (3.4) and the fact
that 9 = a constant that

(3.6) O(up,tuy) < ffznp.
2

Now from (2.17) and (3.4), we see that

AU, un) = f pA(z,upn,Dzy)Dz, .

0
Hence, it follows from (3.6) and (A-3) that
3.7 Co f |D2n|2p < f fzap + f Zp Vn,
2 n n

where ¢p is a positive constant and Z is a nonnegative function in L;,. It
follows from (3.4) that (2,,¢0), = 0. So we conclude from Lemma 1 and
(3.7) that

c [|Dzl’p < T, flflp{ leznlzp}1/2+ [ zp vn.
2 [p4 (] [

Since ¢ is a positive constant, it follows from this last inequality that

(3.8) 3K, >0 such that f IDzn|2p <K; Vn.
2

Since u,, € S, Lt follows that u, € C°(f2). Consequently, we see from (3.4)
that 2, € C°(£2). Therefore using (3.8) in conjunction with Lemma 1, we
obtain

(3.9) K3 >0 such that |z,(z)] < K3 Vz € 2 and Vn.
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Now from (3.4), we see that

(3.10) (Un,un)p = |[@a(0)? + (2n, Zn)p -
Also, since ¢ = a constant, we find from (3.4) that
(3.11) f | Duyn|®p = f | Dz, |%p,
Q 0
and furthermore from (1.2) and (3.9) that
(3.12) (2ny2n), < K2 f p Vn.
o

Next, from (1.2), (1.3), and (3.3), we see that

nli-»ngo ;?f |Dunl?p + (un, un), = 0.

But then it follows from this fact in conjunction with (3.8) and (3.10)—(3.12)
that

. A 2 _
(3.13) nlLI{}oluﬂ(O)l = 00.

As a consequence of this last fact, we have the existence of a subsequence
of {u(0)}52, which tends to 0o or —oo. We shall assume the existence of
a subsequence (which for ease of notation we take to be the full sequence)
which goes to oo and arrive at a contradiction. A similar argument will
apply in case the subsequence goes to —oo. Hence, we assume that (3.13)
implies that
(3.14) nlingo Un(0) = 00,
and will show that this leads to a contradiction.

To do this, first of all we observe from (1.5) that there exists aset E C 2
of Lebesgue measure zero such that

(3.15) 9(z,t) >0 VzeN-FEandVt>0.

Next we observe from (3.4) that

(3.16) un(z) = Un(0)o + 22(z) Vn,

where ¢y is a positive constant. From (3.14), it follows that 3ng such that
(3.17) Bn(0)p0 > K3 +1 forn > ng.

Consequently, it follows from (3.9), (3.16), and (3.17) that

(3.18) up(z) 21 forz € Rand n>ny.

From (3.15) and this last fact, we conclude that
(3.19) 9(z,un(z)) 20 forz€ 2 - FE and n > ny,
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where E C 2 is a set of Lebesgue measure zero. Next using (3.1) and
selecting v = (g in (2.18), we see that

(320)  Qun,p0)+ [ 9(2,un)pop+ 0 un,p0), = [ fpop.
n 2

Now from the fact that (g is a positive constant, we see from (2.17) that
Q(tn,90) = 0 and from (1.6) that [, fop = 0. Therefore, we conclude
from (3.5) and (3.20) that

(3.21) f g(z,un)pop + 218, (0) =0 Vn.
Q

But from (3.19), the integral in (3.21) is nonnegative for n > ngo. Conse-
quently, n~'4,(0) < 0 for n > ng, and we obtain u,(0) < 0 for n > n,.
This inequality is a direct contradiction of (3.14). We conclude that (3.3) is
false and (3.2) is indeed true.

Next we invoke Lemma 3 and obtain the existence of a subsequence of
{un}3%, (which, for ease of notation, we take to be the full sequence) and
a function

(3.22) ve H,,

such that the following facts prevail:

(3.23) nl_l_f'go llun — ull, = 0;

(3.24) ﬂlmc}o un(z) = u(z), ae.in 2;

(3.25) nli_'ngo f Du,wp = f Duwp Vwe L:.
2 2

We propose to show also there exists a subsequence {uy;}2; such that
(3.26) lim Duy (z) = Du(z), ae.in 2.
j—00
To establish (3.26), it is sufficient to establish the following two facts:
(1) 3 a subsequence {uy;}$2, such that
(3.27) jlltgo[A(a:, Un;, Dtg;) — Az, un;, Du))

X [Dun,;(z) — Du(z)] =0 for a.e.z € 2;
(2) with {un,}$2, designating the same subsequence as in (3.27),
(3.28) {|Dun;(2)|}52, is pointwise bounded for a.e. z € 2.

The fact that (3.27) and (3.28) together imply (3.26) via (A-4) and (3.24)
is a standard technique in the theory of quasilinear differential equations (see
[5] or [6]), and we leave the details to the reader. For an explicit situation
similar to the above situation, we refer the reader to [9, (2.34)-(2.36)).
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Hence to establish (3.26), it remains to show that (3.27) and (3.28) hold.
To show that (3.27) holds, we show separately that

(3.29) nango f A(z,un, Du)[Du, — Dulp=0
2
and
(3.30) lim [ A(%,un, Dun)[Dun — Dulp=0.
2

It is clear from (A-4) and (8, p. 70] that (3.29) and (3.30) together imply
(3.28). We leave the details to the reader. (For an analogous situation in
the literature, see [9, (2.40) and (2.41)].)

(3.29) follows immediately from the following two easily established facts:

(1) nlirrolo f A(z,u, Du)[Du, — Du]p =0,
2

(ii) nl_i»nol.:> f [A(z, up, Du) — A(z,u, Du)][Du, — Dulp=0.
2

It remains to establish (3.30). From (2.11) we see that (3.30) is equivalent
to showing

(3.31) Jim Q(un,up, —u)=0.

To establish (3.31), define

n

(3.32) Pou =) a(k)ex,
k=0

where %(k) = (u, pk),. Then P,u € S, as defined in Lemma 4. Also, it is
easy to see from (2.7)-(2.10) that

(3.33) ,‘1520 llu = Prullp, = 0.
It consequently follows from (A-2) and (3.2) that
(3.34) nlingo Q(tn, Pou—1u)=0.
Hence (3.31) will follow once we show that

(3.35) nll'rrgo Q(tpn, uy — Pau) = 0.

To establish (3.35), we observe from (3.32) that P,u € S,. Therefore it
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follows from (3.1) and (2.12) that

(3.36)  Q(un,Up — Pou) = — (Up,un — Pru),n~! + f flup — Ppulp
Q

- f 9(z,un)[un — Paulp.
2

From (3.2) and Lemma 2, we see that 3K such that |u,(z)| < K5 Vn and
Vz € 2. Hence from (g-2) we see 3¢ € L} such that |g(z,u,)| < {(z) Vn and
a.e. in 2. Also from (3.24) and (3.33), we see that lim,_,oo(un — Pou) =0
a.e. in 2. We therefore conclude that the last term on the right-hand side
of (3.36) goes to zero as n — oco. A similar situation prevails for the first
two terms. Hence (3.35), and consequently (3.27), is established.

(3.28) follows from standard techniquein the theory of quasilinear elliptic
equations. We leave the details to the reader. (See [9, (2.48)] for a similar
situation.) This completes the proof of (3.26).

To complete the proof of Theorem 1, let v € |J;—, Sn, 52y v € Sp,. Then
it follows from (3.1) and (2.12) that for n; > ny,

(3.37) Q(un,;,v) + f 9(z, un; Jvp + nj—l (Un;,v)p = f fop.
(Y] (7]

Now from (A-1), (3.24), and (3.26), we have

(3.38) lim |A(z,u%n;, Dus;) - A(z,u,Du)||Dvlp=0, a..in 2.

j—oo
Also, it follows from (3.2), (3.22), and (A-2) that
3K¢ > 0 such that f |A(z, up, Duy) — A(z,u, Du)|’p < K¢ Vn.

Q

This fact in conjunction with the fact that Dv € Lf, and Schwarz’s inequality
gives that {|A(z, un, Du,) — A(z,u, Du)||v|p}3%, is an absolutely equiinte-
grable sequence. This fact in turn, when combined with (3.38) and Egorov’s
theorem [8, p. 75], gives that

(3.39) "ILI{:O ,‘7[ A(z,un;, Duy;)Dvp = r}f A(z,u,Du)Dvp.
The same idea used to establish (3.39) shows that
(3.40) Jim nf 9(z, tn;Jvp = 5[ 9(z,u)vp.

Since |(un;,v),| < |lun;|l,llv||,, we furthermore deduce from (3.2) that
lim;_, o0 n;l (un;,v), = 0. This last fact in conjunction with (3.37), (3.39),
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and (3.40) gives that

(3.41) Q(u,v) + fg(z,u)vp: ffvp Vv € U Sn -

N n n=1

Finally, let v € H; ,. Then we define P,v as in (3.32) and observe as
in (3.33) that hm,....oo ||v — Povllp,, = 0. Since A(z,u, Du) € L2, it follows
from (2.11) and this last fact that

(3.42) nangO Q(u, Ppv) = Q(u,v).
In a similar manner, we see that
(3.43)(a) lim [ g(z,u)Pavp = [ g(z,u)vp,
n 2
(3.43)(b) lim nf fPuvp = ;! fup.

Since P,v € S,, we see that (3.41) holds with v replaced by P,v. But then
(3.42) and (3.43)(a) and (b) show that (3.41) holds for all v € H} , and the
proof of Theorem 1 is complete.

4. Concluding remarks. Theorem 1 is capable of being generalized.
With this in mind, we now leave p(z) and p(z) have the following properties
in this section:

(4.1) pEC' ), p(z)>0 Vze, [p<oo,
0l

(4.2) peEC’(), p(z)>0 Vzen, f p! < o0,
e}

(4.3) 3K >0 suchthat p(z)< Kp(z) Vz €.

We then define CJ and Cj , as before and L3, L%, and H]} , as before for
1 <qg<oo. We a.lso take (A 1)—(A 4) and (g-l), (g-2) as before and (1.4)
continues to stand for a weak solution of —D[p(A(z,u, Du))] + g(z,u)p =

f(z)ep.
Remark 2. Theorem 1 continues to hold if p and p meet (4.1)-(4.3).

To establish Remark 2, we observe that Lemma 1 continues to hold with
I = [f,p']'/?. The same holds for Lemma 2. Also we see that Lemma
3 still remains true and also Remark 1 continues to hold. The question is:
do we have the analogue of (2.7)-(2.10)? The answer is yes. To see this,
we define L(u,v) = [, pDuDv + puv for u,v € H} , and define the Raleigh
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quotient J(u) to be
J(u) = L(u,u)/{u,u),, v#0,ve€E H;'p.

Then proceeding exactly as in [2, pp. 213-214], we use the compactness of
the imbedding H} , in L2 given by Lemma 3 to obtain a sequence {¢n}32,
with the properties (2.7)—(2.10) where A\ = 1 and {);}3%, instead of being
given explicitly by (2.8) is now a nondecreasing sequence of real numbers
with lim, o A = 00. We also note as before that (g is a positive constant
and Ag is a simple eigenvalue.

We observe that Lemma 4 continues to hold with S, defined with respect
to this new orthonormal sequence. Also the proof of Theorem 1 goes through
in a similar manner since all the lemmas hold. We leave the interested reader
to check the details. .

A typical A(z,t,£) that will work for the theorems presented in this paper
is A(z,t,£) = a(z)b(t)[€+G(|€])€] where a € C°(R2),b € L*(R)NC(R), and
G is a bounded continuous nondecreasing function on [0, 00) with G(0) > 0.
Also we suppose Jc; > 0 such that a(z) > ¢; Vo € 2 and b(t) > c;
Vt € R.

In closing, we point out that as a special case our theorems do cover
the familiar Chebyshev polynomials [1, pp. 567-568] and [3, p. 40 and
pp- 46—49]. As a sequel to this paper, we shall present further, but dif-
ferent results involving special functions and quasilinear partial differential
equations.
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