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The image of a closed interval of reals under a continuous map into the
plane is nowhere dense if the map assumes each value at most twice. This
property of the interval, proved by Hahn [2] and Mazurkiewicz [9], is shared
also, as was shown by Hurewicz [3], by curves X such that

() each non-degenerate subcontinuum of X has non-empty interior.

It is shared also by arbitrary dendrites; the latter is a result of Sieklucki
announced by Lelek [7] (). However, the Sierpinski universal plane curve does
not have this property, as its holes can be sewn in such a way that the resulting
space is a plane square (sewing means that each point is sewn with at most one
other); see [5]. So the property does not follow from one-dimensionality
only.

Following Borsuk and Molski [1], a continuous map assuming each value
at most twice is called simple. We call a compactum sewable if it can be mapped
by a simple map onto a plane subset having non-empty interior; if not, we call
it non-sewable.

From widely known general theorems it follows that zero-dimensional
compacta and (for other reasons) compacta of dimension greater than 2 are
non-sewable. So the problem of sewability of compacta is of interest only when
they have dimension 1 or 2. Here we restrict ourselves to the problem of
sewability of plane curves, i.e., of plane continua of dimension 1, as we regard
this particular case to be sufficiently difficult.

Our first observations suggest that the sewability should be related to the
size of the curve: the “small” ones, as arcs and dendrites, are non-sewable, the
“big” ones, as the Sierpinski unversal plane curve, are sewable. But this simple
correlation fails if we pass to other examples.

A curve is called regular if it has a base consisting of sets with finite
boundaries. Regular curves are in a certain sense small. However, there exist

(*) Professor Karol Sieklucki has kindly informed us that this result dates back to his
unpublished doctoral dissertation.
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regular curves which are sewable, even among those of finite order, i.e., having
a base consisting of sets cardinalities of whose boundaries have a common
bound. In the example which will be given in the final part of these
introductory remarks, this bound is 6.

From the Baire theorem it follows that a compactum being the union of
countably many non-sewable compacta is non-sewable. Thus the (sin1/x)-
curve is non-sewable, being the union of countably many arcs. Being not
locally connected, the (sin 1/x)-curve is not regular.

Thus the non-sewability is not related to the regularity.

The situation described above makes interesting the question: Is the
Sierpinski triangular curve sewable? It is regular and is minimal in the sense of
order among everywhere ramified curves. Curves having property (x) of
Hurewicz, as well as dendrites, are nowhere dense if they are subsets of the
Sierpinski triangular curve, so the Baire theorem cannot be applied to deriving
its non-sewability from the non-sewability of much more simpler compacta
mentioned above. None the less we shall show — and this is the main result of
the paper — that the Sierpinski triangular curve is non-sewable.

This result sheds some light on the matter of scope of non-sewable plane
curves. However, the whole problem is far from being solved. We do not know,
for instance, whether the property of being non-sewable is inherited by
subcompacta of the Sierpinski triangular curve. (P 1383)

Among the properties of the Sierpinski triangular curve used in the proof of
its non-sewability we distinguish the property of preserving interiors under
embeddings. This property allows us to reduce the proof to maps called here
conditionally interior preserving. But the regular sewable curve mentioned
above also enjoys this property, and the crucial point of the proof lies in an-
other place, namely in the final part of the proof, where the triangular shape of
the curve plays a role, when using Sperner’s Pflastersatz we obtain a contradic-
tion in our reasoning a contrario.

The above-mentioned result of Hurewicz [3], even adapted to the par-
ticular case considered here, is somewhat stronger than that quoted above. It
says that simple maps from curves having property («) cannot raise the
dimension (without assuming that the image lies on the plane); see also
Kazhdan [4] and Sieklucki [10]. The same concerns dendrites. However, we
do not know whether there exist dimension raising simple maps from the
Sierpinski triangular curve. (P 1384)

The problem of whether and how the dimension is raised under continuous
maps having finite inverse images of points has been extensively treated since
Hurewicz’s paper in the literature; a rich survey is given by Lelek [7].

‘An example of a regular sewable curve. Delete from a plane square
a lense-shaped domain joining the middle points of the top and the bottom
sides of the square. From both the remaining “rectangles” delete two
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“horizontal” lense-shaped domains joining the middle points of opposite
“vertical” sides of these rectangles. Do the analogous “vertical” cuttings in the
four “rectangles” just obtained, and so on (see Fig. 1).

Fig. 1

Sticking together the opposite sides of cuttings, we get from the curve the
plane square again. We omit the proof, as the argumentation is the same as
that — making use of the Moore decomposition theorem — in [5], where the
“sewing” of the Sierpinski plane universal curve was performed.

1. Simple maps from compacta. A space Y will be said to be of
dimension > n everywhere if the closure of each of its open non-empty subsets
is of dimension > n.

In what follows the symbols cl, int and bd stand for closure, interior and
boundary of subsets with respect to the entire space under consideration.

LeEMMA 1. Let f be a simple map from a compactum X of dimension < n into
a metric space of dimension = n everywhere. If F is a closed subset of X, then the
interiors of f(F) and of f(X —F) are disjoint.
Proof. If not, there would exist an open non-empty subset V of Y such that
clVcintf(F)nintf(X —F).

The map frestricted to B = F nf ~1(cl V) is then one-to-one, thus a homeomor-
phism onto cl ¥, as each its value is assumed also on the set X — F disjoint from
B and the map f is simple. But cl V is of dimension > n, the space Y being of
dimension > n everywhere. Thus the subset B of X is of dimension > n,
contrary to the assumption that X is of dimension < n.

A map f: X —» Y will be said to be conditionally interior preserving if
f(U) < intf(X) implies intf(U) # O

for each open non-empty subset U of X.

A subset of a topological space is called regularly closed if it is the closure of
an open subset, in fact, the closure of its interior.

LEMMA 2. If f: X — Y is a conditionally interior preserving simple map from
a compactum into a metric space and F is a regularly closed subset of X, then

clint f(F) nintf(X) = f(F) n intf(X);

this means that the sets f(F) and clintf(F) are equal if they are restricted to
intf(X). In particular, f(F) is regularly closed if it is contained in intf(X).
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Proof. To prove the non-obvious inclusion, suppose to the contrary that
the set

W= (f(F)—clintf(F)) nintf(X)
is non-empty. This implies that the set U = F nf ~ (W), which is open in F, is
non-empty. But F is a regularly closed subset of X, and therefore U has
non-empty interior in X. We have f(U)cintf(X), as f(U)c W and
Wc intf(X). This implies that inif(U) # O, since f is conditionally interior
preserving. Thus int W# @. But, on the other hand, Wis nowhere dense, and
we get a contradiction.

LEMMA 3. Let f: X — Ybe a conditionally interior preserving simple map from
a compactum of dimension < n into a metric space of dimension = n everywhere.
If F is a closed subset of X, then

f(bd F) = bd f(F).
Proof. Suppose to the contrary that the inclusion does not hold, i.e., that
f(bd F) nintf(F) # 9.
Hence bd F n f~!(intf(F)) # &. Thus the open set
. U =f"Yintf(F)—F
is non-empty.

We have
f(U) cintf(F) c intf(X),
which implies that intf(U) # @, as f is conditionally interior preserving.
On the other hand, f(U) cf(X—F), and we see that the open and

non-empty set intf(U) is contained in the intersection of f(F) and f(X — F),
contrary to Lemma 1.

COROLLARY. Let f: X — Y be a conditionally interior preserving simple map
from a compactum of dimension < n into a metri¢c space of dimension = n
everywhere. If F is a closed subset of X such that f(F) < intf(X), then

intf(F) = f(X)—f(X —int F).

Proof. In the proof of the inclusion

S(X)—f(X —int F) < intf(F)

none of the preceding lemmas is needed. Observe namely that the set on the
left-hand side is contained in f(F), since from the obvious equality
(X—intF)uF =X
it follows that
f(X—int F) Uf(F) = f(X).

Thus, being open in f(X), it is contained in the interior of f(F) relatively
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to f(X). But, by assumption, f(F) is contained in the interior of f(X). Hence the
relative interior of f(F) with respect to f(X) equals its interior in the entire
space Y, ie., intf(F). Thus the desired inclusion holds.

To show the converse inclusion observe that

intf(X—F)nintf(F) =0

by Lemma 1. By Lemma 3, this is strengthened to the disjointness of the
interiors of the sets A = f(X —intF) and f(F).

Clearly, we have also clintA nintf(F) =@. Applying Lemma 2 to
X —intF in place of F, we get

clint 4 nintf(X) = A nintf(X),
which leads to
clint A nintf(F) = Anintf(F)

and, in consequence, to Anintf(F) = @, ie. to the equality
| f(X —int F) nintf(F) = @,

which implies the needed inclusion.

A space is said to have the property of preserving interiors (under
embeddings) if homeomorphic copies of its open non-empty subsets contained
in this space have non-empty interiors.

THEOREM 1. If f is a simple map from a compactum having the property of
preserving interiors into a metric space, then f is conditionally interior preserving.

Proof. Let X be a compactum having the property of preserving interiors
and let f be a simple map from X into a metric space Y.

Let U be a non-empty open subset of X such that f(U) < intf(X). Suppose
that intf(U) = @. We have f(X —U) =f(X). Let V be an open non-empty:
subset of X such that cl V< U. Each value assumed by fon cl V is assumed also
on X — U. Thus the inverse image f ~'(f(cl V)) of f(cl V) splits into two disjoint
compact sets, one of which is cl ¥V and the other

A=X-U)nf Y{fclV),

lying in X—U. Since f is simple, its restrictions to each of these sets are
one-to-one and, therefore, are homeomorphisms onto f(cl V).

The inverse image f ~!(f(V)) of f(V) splits also into two disjoint sets, one of
which is V and the other, call it B, lying in 4. Both these sets are mapped by
f onto f(V) homeomorphically, as f|V andf|B are restrictions of homeomor-
phisms. It follows that ¥ and B are homeomorphic. But X has the property of
preserving interiors. Thus int B # Q.

Now, note that the sets f(X—(Vuint B)) 'and f(int B) cover f(X), as
f(X—V) =f(X). Moreover, these sets are disjoint, since f(int B) < f(V) and fis

9 — Colloquium Mathematicum LIX.1



130 W. DEBSKI AND J. MIODUSZEWSKI

simple. The set f(int B) is open in f(X), being the complement of the closed
subset f(X —(Vuint B)) of f(X). But

f(int B) = f(V) < intf(X),

and therefore f(int B) is open in Y. Thus intf(V) # O, the set int B being
non-empty. We get a contradiction with intf(U) = @.

2. Conditionally interior preserving simple maps into E" which raise dimen-
sion. We shall consider here conditionally interior preserving simple maps from
a compactum X of dimension < n into E”", the Euclidean n-dimensional space.
As E" is of dimension > n everywhere, the lemmas from the preceding section
are applicable. ,

For a given conditionally interior preserving simple map f: X — E", where
n > 2, we shall prove some properties of images of closed subsets F of X.

In the first of the announced lemmas the assumption that fis conditionally
interior preserving is not required.

LEMMA 4. If a regularly closed subset F of X has connected interior and this
interior is not disconnected by points, thenf(F) is connected and is not
disconnected by points belonging to intf(X).

Proof. The connectedness of f(F) is obvious.

Suppose that p disconnects f(F). This implies that the set f~!(p) = {a, b}
disconnects F. We have a # b, since F, being the closure of int F, is connected
and not disconnected by points; int F has these properties by assumption. The
points a and b lie in the interior of F; otherwise, one of them would disconnect
int F. '

Suppose that peint f(X). Now, in each neighbourhood of p there are values
of f assumed on X —F, since f(F), being disconnected by p, cannot fill any
whole neighbourhood of p in E" if n > 2; in particular, any such neighbour-
hood which is contained in f(X). By compactness and continuity, p would be
the value of f assumed at a point of X —int F (the set which is the closure of
X —F), i.e.,, at some point other than a and b. A contradiction, for f is simple.

LEMMA 5. If F is a closed subset of X such that f(F) c intf(X) and such that
the complement X — F of F is connected and not disconnected by points, then the
complement E"—intf(F) of f(F) is connected and not disconnected by points.

Proof. We have
E"—intf(F) = f(X —int F) U (E"—f(X)).
Indeed, from the Corollary to Lemmas 1-3 it follows that
S(X)—f(X—intF) = intf(F)
and, in consequence, we have the desired equality.
The set f(X —int F) is connected, since X —int F is connected and is not

disconnected by points of intf(X); the latter is a consequence of Lemma
4 applied to X —int F in place of F.
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The set E"—f(X) is the union of regions of E" whose non-degenerate
boundaries lie on the boundary of f(X). But the boundary of f(X) is contained
in f(X —int F), as f(F) < intf(X). Thus the union of E"—f(X) and f(X —int F),
i.e., the set E"—intf(F), is connected. It is not disconnected by points. Indeed, it
is obviously not disconnected by points of the open set E"—f(F). The points of
f(F), as we have seen, do not disconnect f(X —int F) and they do not lie on the
closure of ‘E"—f(X); therefore, they also do not disconnect E"—intf(F).

LEMMA 6. Let F be a regularly closed subset of X such that int F and X — F
are connected and not disconnected by points, and such that f(F) < intf(X). The
boundary bd f(F) of f(F) is connected and not disconnected by points.

Proof. We have
bdf (F) = f(F)  (E"—int (F)),
since f(F) is closed.
We have obviously

f(F)u (E"—intf(F)) = E".

Thus, from the unicoherence of E" (see, e.g., [12], p. 228, Corollary 7.31) we
infer that the intersection bdf(F) of f(F) and E"—intf(F) is connected, both
these sets being connected.

Remove a point p from bdf(F). We have

bdf(F)—{p} = (f(F)—{p}) ~ (E"—(int(F) U {p})).
Add the point at infinity to E" obtaining the sphere S". We have

$'~{p} = (FO)— (7)) v (B~ (nts () (p}).

i.e,, again.a decomposition of the Euclidean n-dimensional space S"— {p} into
two connected sets, since f(F) and E"—intf(F) are, by Lemmas 4 and S5,
connected and not disconnected by points. As before, from the unicoherence of
S"—{p}, n =2, we infer that the intersection bdf(F)—{p} of these sets is
connected. This completes the proof.

If a compact subset A of E" is connected and not disconnected by points,
then the boundaries of complementary regions of A are connected and not
disconnected by points. Applying this theorem known in the topology of
Euclidean spaces (see, e.g., [6], Section 53, IV.4, p. 349), we get from Lemma
6 (assuming that F satisfies the hypotheses of that lemma) the following

COROLLARY. Let U be a complementary region of bd f(F). The boundary bd U
of U is connected and not disconnected by points.

3. The Sierpinski triangular curve. Let T be an equilateral triangle on the
plane. Divide T into four congruent triangles and remove the interior of the
middie one. The remaining triangles T;,, T; and T, have diameters equal to the
half of that of T and the union T of them is connected (see Fig. 2).
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To n
Fig. 2

Apply the same procedure of dividing to the triangles T;, and then to the
triangles obtained recursively in this way. We get at the n-th stage of the
procedure 3" congruent triangles of diameters equal to the (1/2")-th of the
diameter of T. The union T™ of the triangles obtained at the n-th stage is
connected, thus a plane continuum. The infersection

S=TOATDA...

is the Sierpinski triangular curve. It was described by Sierpinski in [11].

Call the intersections with S of triangles obtained in this procedure the
triangles of S.

The triangles S N T; will be called the main subtriangles of S. The common
points between adjacent triangles of S will be called links; they are common
vertices of triangles.

The following topological properties of S are obvious:

(A) S is not disconnected by points.

(B) A triple disconnecting S into three connected sets is the triple of links
between main subtriangles of S.

(C) No triple disconnects S into more than three connected sets.

THEOREM 2. A subspace of S homeomorphic to S is a triangle of S.

Going into details: a topological embedding of S into S is a homothety onto
a triangle of S and this homothety is determined by the position under the
embedding of the triple of links between main subtriangles of S.

Proof. Let h be an embedding of S into S. Let X = h(S). Let A be the
smallest triangle of S containing X. Let A,, A, and A, be main subtriangles of
A. The set X cannot lie in the union of any two of them, since in that case it
would be disconnected by the common vertex of these subtriangles, contrary to
the fact that X, being homeomorphic to S, cannot be disconnected by points
(property (A)).

This means that X has points in geometric interiors of all subtriangles A; of
A, ie., intersects these subtriangles not only at their vertices.

All three links between A,; belong to X, since in the case where one of them
misses X, each of the remaining two would disconnect X, again contrary to
property (A).

Thus the triple consisting of links between A; disconnects the set X into at
least three connected sets and, in consequence, by property (C), into exactly
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three connected sets. In view of property (B), this triple is the image of the triple
of links between subtriangles SN T; of S.
Now, we shall show that

(*) the main subtriangles S N T; of S are mapped by h into the corresponding
main subtriangles of A.

To see this, let a triangle S N T; be fixed and let x be the link between the
remaining two main subtriangles of S. The value h(x) at x is, according to the
remark made above, a link between some of two main subtriangles of A.
Denote by A,; the remaining subtriangle (the opposite to the link just men-
tioned). The image of S n T; under h is contained in the subtriangle A; indicated
above. Indeed, the image of S n T; does not contain h(x). Therefore, it must be
contained in A, since otherwise it would be disconnected by one of the
remaining links. This is impossible since S N T;, being homeomorphic to S,
cannot be disconnected by single points (property (A) of S).

Now, we shall apply the preceding reasoning to the partial embeddings of
SN T, into A; This can be done, since from () it follows that the image of
SN T; under h does not lie in a single main subtriangle of A,

As before, the triple consisting of links between main subtriangles of S N T;
is mapped under h onto the triple consisting of links between main subtriangles
of A; But now, the values of h at these links are determined by the values of
h on the triple of links between main subtriangles of S which are known from
the preceding step.

The process continues and we see that S embeds under h densely into A and
that the embedding is a homothety on the set of links of S, this homothety
being determined by the values of h on the triple of main links of S. Thus, by
compactness and continuity, the embedding A is the homothety between S and
A determined by the initial condition mentioned above.

From Theorem 2 the following immediately results:

COROLLARY. If U is an open non-empty subset of S and V is a homeomorphic
copy of U contained in S, then the interior of V is non-empty; in other words, the
Sierpinski triangular curve has the property of preserving interiors (under
embeddings).

In fact, we can say more: if U does not contain vertices of the triangle T,
then the set Vis open. Thus the Sierpinski triangular curve has the property of
preserving openness in the sense commonly used if we neglect the above-
mentioned singularity.

From the last Corollary and Theorem 1 we get immediately

COROLLARY. Simple maps from the Sierpinski triangular curve into the plane
are conditionally interior preserving.

Note. It is not difficult to repeat the reasoning from the proof of Theorem
2 and to show that the “rectangular” curve described in the introductory
section enjoys a property analogous to that proved for the Sierpinski triangular
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curve, in which the role of subtriangles will be played by “subrectangles”. We
do not insert the proof because this fact will be not used in our deduction,
serving only as a support for the comment we have made in the introduction.

Let us note the following easy property of the Sierpinski triangular curve S:

(D) The complement S—A of any triangle A of S is connected; if, in
addition, the triangle A lies in the plane interior of 7, then S—A is not
disconnected by points and all three vertices of A lie on the topological
boundary bd A of A with respect to S.

4. Main theorem. We know from Section 3 that simple maps from the
Sierpinski triangular curve into the plane are conditionally interior preserving.
Some properties of images of closed and regularly closed subsets under
conditionally interior preserving simple maps from compacta into E", in
particular into the plane, were studied in Section 2. This preparatory material
will be used now in the proof of the following -

MAIN THEOREM. There does not exist a simple map from the Sierpinski
triangular curve onto a plane subset having non-empty interior.
In other words: the Sierpinski triangular curve is non-sewable.

Proof. Assume to the contrary that we have a simple map f from the
Sierpinski triangular curve S into the plane such that

intf(S) # @.

Thus there exist triangles A of s (also among those which lie in the plane
interior of T) such that

(i) f(A) = intf(S).
According to property (D) of S, if A is such a triangle, then

(ii) S— A is connected and not disconnected by points and all three vertices
of A lie on the topological boundary bd A of A with respect to S.

The map f, being a simple map from the Sierpinski triangular curve S, is
conditionally interior preserving. The dimension of S is 1 and the values of f lie
in E?, so the preparatory material from Section 2 concerning images of closed
subsets F of compacta considered there can be applied to triangles A of S in
place of F. Note that triangles of S are regularly closed subsets of S.

Let A be a triangle of S having properties (i) and (ii). Let a, b and ¢ be the
vertices of A. According to (ii), the vertices of A lie on bd A. Since (i) holds,
Lemma 3 can be applied. We infer that the values f(a), f(b) and f(c) lie on
bdf(A).

Points of bdf(A) different from f(a), f(b) and f(c) are single values of f|A
since these points are also values at some points of S—A; this follows easily
from the fact that f(A) < intf(S).

The values f(a), f(b) and f(c) may or may not be single values of f.

A triangle A of S will be said to be of type [ 1, *, ] if at least one value, f(a),
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f(b) or f(c), is single for f|A; similarly, a triangle A will be said to be of type
[1, 1, «x] or of type [1, 1, 1] if at least two or (in the latter case) all values f(a),
f(b) and f(c) are single for f|A.

Observe that for each triangle A of S at least one of its main subtriangles is
of type [1, *, *].

Indeed, let us denote by x, y and z the links between the main subtriangles
of A, as in Fig. 3. If the value f(x) at the link x is double for f restricted to the
subtriangle at b, it is single for the subtriangle at c.

C

o b Fig. 3
z

Now, observe that for each triangle A of type [1, *, ] at least one of its
main subtriangles is of type [1, 1, *].

To see this, let f(a) be a single value of f|A. As before, the values at the links
x, y and z are single for at least one of the adjacent main subtriangles of A. If
f(y) or f(2) is a single value for the subtriangle at a, then this subtriangle is of
type [1, 1, #]. If not, the values f(y) and f(z) are single for the adjacent
subtriangles (at b and at c¢), and the value f(x) is single for one of these
subtriangles. Thus, one of them is of type [1, 1, *].

Now, we shall show that if A is a triangle of type [1, 1, =], then at least one
of its main subtriangles is of type [1, 1, 1]; moreover, we shall show that if A is
of type [1, 1, 1], then all of main subtriangles of A (and therefore all the
subtriangles of A) are of type [1, 1, 1].

1. To prove the first part of the assertion assume that f(a) and f(b) are single
values for f|A and that the value f(c) is double.

Clearly, f(a) #f(b) and f(a) #f(c) #f(b). In the case considered here,
according to a remark at the beginning of the proof of the theorem, all the
points from bdf(A) are single values of f|A, except the value f(c), which is
double.

. By Lemma 6, bdf(A) is connected, so the inverse image A nf ~!(bdf(A))
consists of at most two connected components, since only one double value
appears on bdf(A), other being single. Only one of these components can be
non-degenerate, since in the other case the images of both, being non-
degenerate continua (f“cannot lower dimension, being simple) intersecting at
a single point, would have as their union a continuum disconnected by a point
(point f(c)). On the other hand, this union is the whole bdf(A) and, by Lemma
6, it is a continuum not disconnected by points.



136 W. DEBSKI AND J. MIODUSZEWSKI

Denote by C the non-degenerate component of A nf ~*(bdf(A)). Since the
other is degenerate, we have

f(€) = bdf(B).

We have ae C and be C, since the value at the single point of the degenerate
component must be f(c).

Consider the possible positions of C in A and in its main subtriangles,
preserving the notation from Fig. 3.

The case where the links x and y belong to C.

The value f(x) is then a single value for the subtriangle at b (a double value
of f|A must be the value at c, at a point not belonging to the subtriangle at b).
For the same reasons the value f(y) is a single value for the subtriangle at a.
The value f(z) is single for one of the subtriangles having a or b as a vertex. One
of these subtriangles is therefore of type [1, 1, 1].

The case where x or y does not lie on C.

Now, zeC since C joins a and b in A.

In the subcase where xeC, the subtriangle at b is of type [1, 1, 1].

Similarly, if yeC, the subtriangle at a is of type [1, 1, 1].

Consider the remaining subcase where x¢ C and yé¢C.

Now, C is contained in two subtriangles, those at a and at b, and therefore
z disconnects C. We have also c¢ C, so f|C is a homeomorphism onto bd f(A).
Thus we infer that bdf(A) is disconnected by f(z), again contrary to Lemma 6.
So the subcase where x¢ C and y¢ C is contradictory.

2. Assume now that all three values f(a), f(b) and f(c) are single for f|A.
Now, all the values of f|A lying on bd f(A) are single, and C, defined as before
as the non-degenerate component of A nf ~(bdf (A)), is a continuum homeo-
morphic to bdf(A) under the map f|C. The continuum C must contain all
three links x, y and z, since in the other case C, and in consequence bd f(4),
would be disconnected by points, and this is impossible by Lemma 6. The
values f(x), f(y) and f(z), lying on f(C) = bdf(4), are single for f|A. Clearly,
they are single for f restricted to subtriangles of A. Thus all subtriangles of
A are of type [1,1,1].

From the above considerations it follows that there exist triangles A of
S satisfying (i), lying in the plane interior of T, and therefore satisfying (ii) and
all the conditions assumed in lemmas in Section 1 concerning F and being of
type [1, 1, 1]. Observe that all these properties are inherited by all subtriangles
of such a triangle A.

The proof will be completed if we show that

(**) the imbge under f of a triangle A of type [1, 1, 1] lying in the plane
interior of T is a nowhere dense subset of the plane.

The - proof - of (»x) will consist in showing -that

(***) f(A) = bdf(A).
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Proof of (++#). Let C=Anf~'(bdf(A)). The triangle A is of type
[1, 1, 1], so C is a continuum, f|C being a homeomorphism onto bd f(A). The
continuum C must contain, besides the vertices a, b and c, the links x, y and z,
since otherwise it would be disconnected by points, contrary to Lemma 6. Thus
f(x), f(y) and f(z) belong to bdf(A).

Let C;=Cn A, where A, stand for main subtriangles of A.

Observe that C; are connected. Otherwise, the continuum C would be
disconnected by a single point, namely by a link between some of two main
subtriangles of A. But C is homeomorphic to bd f(A), and we get a contradic-
tion with Lemma 6.

The continua C; = f(C;) form a collection of three plane continua each two
of which intersect at a single point, distinct for each pair. These points are the
values of f at the links x, y and z.

We shall show that

1) intf(A) < intf(A,) Lintf(A,) Uintf(A,).

To show this, let peint f(A). Let U be that connected component of int f(A)
to which p belongs. It is, at the same time, a connected component of E?
— bdf(A). Thus, from the Corollary to Lemma 6 it follows that the boundary
of U is connected and not disconnected by points. But bd f(4) is hereditarily
locally connected, being homeomorphic to a subcontinuum of the Sierpinski
triangular curve. Thus bd U is locally connected, being contained in bd f(A)
(recall that, by the Corollary to Lemma 3, the set f(A) is regularly closed, and
therefore equal to the closure of intf(A)).

A locally connected boundary of a plane region, if it is not disconnected by
points, is homeomorphic to the circle (see, e.g., [6], Chapter IX, Section 54,
I1, 4 (ii), p. 360). Thus the boundary bd U of U is homeomorphic to the circle.

By the Schénflies theorem (see also [6], Chapter IX, 54, V,2, Corollary,
p. 381), the closure clU of U is homeomorphic to the closed disc.

We shall show that

(2) bdU < C; for some i.

Clearly, bd U is contained in the union of C,, since this union is contained
in bdf(A). .

If bd U is not contained in one of C;, it cannot be contained in the union of
two of them, since the single common point of these sets would disconnect
bd U, but this is impossible as bd U is a circle.

Thus, to show (2), it remains to exclude the case where bd U intersects each
Ci and is contained in no two of them. In this case, all three points f(x), f(y) and
f(2) lie on the circle bd U, and they divide this circle into three arcs

Ly =0[f0).f@], L,=[f@).f(x)] and L,=[f(x),f()],

having only ends in common.
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The arcs L; are contained in the union of the continua C). Since each two of
these continua intersect at a single point from the triple f(x), f(y), f(2), different
for each couple, each arc L; is contained in one of C;

We have L, = Cy, since f(y) and f(z) belong to both L, and Cj. Similarly,
L, cCj and L, c C.

Thus,

3) L,=CinbdU.

Observe that

4 f(A)nbdU =1L,

Indeed, all the points of bd f(A) are single values for f|A, since the triangle
A is of type [1, 1, 1]. Thus we have

f(&) nbdf(A) =f(A)nf(O)=f(A;nC)=f(C) =C;
and, in consequence,
f(A)nbdU =f(A)nbdf(A)nbdU = C;nbdU = L,,

the last equality being derived from (3), and the first one from the inclusion
bd U < bdf(A).

The sets f(A,) cover the disc ¢l U. They dissect (see (4)) from the boundary of
the disc the arcs L; each two of them having only an end in common. Thus
Sperner’s Pflastersatz can be applied, and we conclude that there exists a point
common for all the sets f(A;)nclU. This point lies in U since

bdUnf(A)=L, and Ly,nL,nL,=0.

This common point is the value of f at points of Ay, A, and A,, and none of
these points is any link x, y and z, since f(x), f(y) and f(z) lie on bd U. Thus we
get a point being the value of f at three points of S. This contradiction
completes the proof of (2).

Now, observe that
(5) bd U < C; implies U < f(A)).

Since U < f(Ay) Vf(A,)wf(4,), it suffices to show that U is disjoint from
the set f(A;UA,—A), i, j and k being different.

The set mentioned above is connected, being the image of the connected set
A;ju A — A, Tt s disjoint from C; = f(A; ~ C), since the values assumed on
C are single for f and the sets A;nC and A;n A, —A,; are disjoint.

Thus, the set f(A;n A,—4)) is disjoint from bd U since, by assumption,
bd U < C;. It lies in one of the complementary regions of bd U, and this region
is different from U, since it has points outside of U, for instance the point f(t),
where ¢ is the link between A; and A,. The point f(¢) lies on bd f(A) and U does
not intersect bd f(A), being one of the complementary regions of bd f(A). Thus
(5) is proved.
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From (4) and (5) it follows that U < f(A)) for some i. Thus peintf(A)) for
this i, U being open. Since p is an arbitrary point of intf(A), we have shown
that

intf(A) cintf(Ay) vintf(A,)vintf(A,).
This implies that
bdf(A) = bdf(A),

since in the other case intf(A;) nintf(A)) # O for some j, j # i; by Lemma 1 of
Section 1, this is impossible.

We can iterate the procedure. We get
bdf(A) = bdf(A)
and, in particular,
fA)YAbdf(A) # 9D

for the subtriangles A’ of A of arbitrary range.

Let ¢ > 0 be given. Let n be such that the images of triangles A’ of range
n have diameters not greater than ¢. Let g be a point of f(A). Let A’ be that of
subtriangles of A of range n for which gef(A'). From f(A)nbdf(A) # 9 it
follows that the distance from g to bd f(A) is not greater than ¢. But g has been
taken in f(A) arbitrarily. Also a positive ¢ is arbitrary. Thus we infer that f(A)
lies in the closure of bdf(4), ie., in bdf(A).

Thus we have proved (x#x), and the proof of our theorem is completed.
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