MONOTONE SOLUTIONS OF SOME DIFFERENTIAL EQUATIONS

 \mathbf{BY}

MARKO Š V E C (BRATISLAVA)

Throughout the whole paper we suppose n to be an odd integer. The aim of this paper is to prove the existence of a solution of the differential equation

(E)
$$y^{(n)} + B(x, y, y', \dots, y^{(n-1)})y = 0$$

which has the properties:

$$(\mathrm{V}) \ \begin{cases} (-1)^i y^{(i)}(x) > 0 \ \text{or} \ (-1)^{i+1} y^{(i)}(x) > 0, & i = 0, 1, ..., n-1, \\ \lim_{x \to \infty} y^{(i)}(x) = 0, & i = 1, 2, ..., n-1, \\ \lim_{x \to \infty} y(x) \ \text{exists and is not zero.} \end{cases}$$

I. We shall be concerned at first with the linear differential equation

(1)
$$y^{(n)} + Q(x)y = 0.$$

We suppose that Q(x) is a non-negative continuous function on the interval (a, ∞) , $-\infty \leq a$, which does not equal zero in any sub-interval of (a, ∞) . Under these conditions we prove some lemmas and theorems.

LEMMA 1. The solution y(x) of (1), which is determined by the initial conditions

(2)
$$y^{(s)}(x_0) = 0, \quad s = 0, 1, ..., n-2, \quad x_0 \in (a, \infty), \\ y^{(n-1)}(x_0) \neq 0,$$

has no zero less than x_0 and for $x < x_0$ it holds:

(3)
$$(-1)^{i}y^{(i)}(x) > 0$$
 or $(-1)^{i+1}y^{(i)}(x) > 0$, $i = 0, 1, ..., n-1$.

Proof. Let $t = x_0 - x$. Then $Q(x_0 - t) = Q^*(t) \geqslant 0$, $y(x) = y(x_0 - t) = u(t)$ and

(4)
$$y^{(i)}(x) = (-1)^i \frac{d^i u(t)}{dt^i}, \quad i = 0, 1, ..., n.$$

From (1) we get for u(t) the equation

$$\frac{d^n u}{dt^n} - Q^*(t) u(t) = 0,$$

and from (2) the initial conditions

(6)
$$\frac{d^{i}u(0)}{dt^{i}} = 0, \quad i = 0, 1, ..., n-2,$$

$$\frac{d^{n-1}u(0)}{dt^{n-1}} \neq 0.$$

Suppose $y^{(n-1)}(x_0) > 0$. Then $d^{n-1}u(0)/dt^{n-1} > 0$. Next from (5) and (6) we have

$$rac{d^{i}u(t)}{dt^{i}} > 0 \quad ext{ for } \quad t > 0, \ i = 0, 1, ..., n-1,$$

and, according to (4), $(-1)^i y^{(i)}(x) > 0$ for $x < x_0$, i = 0, 1, ..., n-1. For $y^{(n-1)}(x_0) < 0$ we get $(-1)^{i+1} y^{(i)}(x) > 0$, i = 0, 1, ..., n-1.

THEOREM 1. Equation (1) has a solution y(x) having the following properties:

(7)
$$(-1)^{i}y^{(i)}(x) > 0$$
 or $(-1)^{i+1}y^{(i)}(x) > 0$, $i = 0, 1, ..., n-1$, for $x \in (a, \infty)$;

(8)
$$\lim_{x \to \infty} y^{(i)}(x) = 0, \quad i = 1, 2, ..., n-1;$$

(9)
$$\lim_{x\to\infty} y(x) \text{ exists and is finite.}$$

Proof. Let $x_0 \epsilon(a, \infty)$ and let $\{x_k\}_{k=1}^{\infty}$ be a sequence of numbers such that $x_k \epsilon(a, \infty)$, $x_k < x_{k+1}$, $\lim_{k \to \infty} x_k = \infty$. Let $y_k(x)$ be a solution of (1) which satisfies at x_k conditions (2) and let $y_k^{(n-1)}(x_k) > 0$,

(10)
$$\sum_{i=0}^{n-1} [y_k^{(i)}(x_0)]^2 = 1.$$

By the use of Lemma 1 we have for $x < x_k$

(11)
$$(-1)^{s} y_{k}^{(s)}(x) > 0, \quad s = 0, 1, ..., n-1.$$

Let now $z_j(x)$, j = 0, 1, ..., n-1, be a fundamental system of solutions of (1) determined by the initial conditions

(12)
$$z_j^{(i)}(x_0) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}, \quad i, j = 0, 1, ..., n-1.$$

Then we can express $y_k(x)$ as follows:

(13)
$$y_k(x) = \sum_{i=0}^{n-1} c_i^{(k)} z_i(x), \quad y_k^{(i)}(x_0) = c_i^{(k)}.$$

Furthermore, condition (10) yields

(14)
$$\sum_{i=0}^{n-1} [c_i^{(k)}]^2 = 1.$$

Hence it follows that the sequences $\{c_i^{(k)}\}_{k=1}^{\infty}$, i = 0, 1, ..., n-1, are bounded. So it is possible to choose convergent subsequences. Let the sequences $\{c_i^{(k)}\}_{k=1}^{\infty}$, i = 0, 1, ..., n-1, be so chosen and let

(15)
$$\lim_{k \to \infty} c_i^{(k)} = a_i, \quad i = 0, 1, ..., n-1.$$

Then, from (13), we have

(16)
$$\lim_{k \to \infty} y_k(x) = \lim_{k \to \infty} \sum_{i=0}^{n-1} c_i^{(k)} z_i(x) = \sum_{i=0}^{n-1} \lim_{k \to \infty} c_i^{(k)} z_i(x) = \sum_{i=0}^{n-1} a_i z_i(x) = y(x).$$

The function y(x) is a non-trivial solution of (1), as it follows from formula (14).

Now, from (11) and (13) we get

(17)
$$\lim_{k \to \infty} (-1)^s y_k^{(s)}(x) = (-1)^s y^{(s)}(x) \geqslant 0, \quad s = 0, 1, \dots, n-1,$$

for $x \in (a, \infty)$, and from (1)

(18)
$$y^{(n)}(x) \leqslant 0$$
.

From the fact that y(x) is a non-trivial solution of (1) and from (17) and (18) it is easy to prove that

$$(-1)^s y^{(s)}(x) > 0 \text{ for } x \, \epsilon(a, \infty), \quad i = 0, 1, ..., n-1,$$

$$\lim_{x \to \infty} y^{(s)}(x) = 0, \quad s = 1, 2, ..., n-1,$$

 $\lim_{x\to\infty} y(x)$ exists and is non-negative and finite.

In the case $y_k^{(n-1)}(x_k) < 0$ the same type of reasoning may be used to prove the existence of a solution of (1) having properties (7)-(9).

THEOREM 2. Let y(x) be a non-trivial solution of (1) having the properties

(B)
$$\begin{cases} \lim_{n\to\infty} y^{(i)}(x) = 0, & i = 1, 2, \dots, n-1, \\ \lim_{x\to\infty} y(x) \text{ exists and is finite.} \end{cases}$$

Then $\lim_{x \to \infty} y(x) = 0$ iff

(19)
$$\int_{-\infty}^{\infty} x^{n-1} Q(x) dx = \infty.$$

Proof. Suppose y(x) is a non-trivial solution of (1) having properties (B) and let $\lim_{x\to\infty}y(x)=0$ and $\int_{-\infty}^{\infty}x^{n-1}Q(x)dx<\infty$. Then there exists a number c such that

$$\frac{1}{(n-1)!} \int_{c}^{\infty} (t-c)^{n-1} Q(t) dt < 1.$$

By integrating (1) and using the properties of y(x) we get

$$y(x) = \int_{0}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} Q(t) y(t) dt.$$

The function y(x) is bounded on $\langle c, \infty \rangle$. Therefore from the last equation we have

$$\sup_{\langle c,\infty\rangle} |y\left(x\right)| \leqslant \sup_{\langle c,\infty\rangle} |y\left(x\right)| \int\limits_{c}^{\infty} \frac{\left(t-c\right)^{n-1}}{\left(n-1\right)!} \, Q\left(t\right) dt \, .$$

But $\sup_{\langle c,\infty \rangle} |y(x)| > 0$. This last inequality yields a contradiction to (20). Let now

$$\int_{-\infty}^{\infty} t^{n-1}Q(t)dt = \infty, \quad \lim_{x \to \infty} y(x) = a > 0$$

and y(x) have properties (B). Then there exists a number x_0 such that for $x \geqslant x_0$

$$(21) y(x) > \frac{a}{2}.$$

By integrating equation (1) and using properties (B) we obtain

$$y'(x) = \int_{x}^{\infty} \frac{(x-t)^{n-2}}{(n-2)!} Q(t) y(t) dt,$$

and from this

$$-a+y(x) = \int_{x}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} Q(t) y(t) dt.$$

Now, according to (21) and the hypothesis, we obtain for $x \geqslant x_{\mathbf{0}}$ the contradiction

$$-a+y(x) > \frac{1}{2} a \int_{x}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} Q(t) dt = \infty.$$

Definition. We shall say that y(x) has properties (V) in (b, ∞) if for x > b

$$i = 0, 1, 2, ..., n-1,$$
 $\lim_{x o \infty} y^{(i)}(x) > 0 ext{ or } (-1)^{i+1} y^{(i)}(x) > 0, \quad i = 0, 1, 2, ..., n-1,$

 $\lim_{x\to\infty} y(x)$ exists and is not zero.

THEOREM 3. Let

(22)
$$\int_{-\infty}^{\infty} x^{n-1} Q(x) dx < \infty.$$

Then equation (1) has only one solution (except for the linear dependence) having properties (V) in (a, ∞) .

Proof. The proof is by contradiction. Suppose $y_1(x) > 0$ and $y_2(x) > 0$ are two linearly independent solutions of (1) having properties (V). Then it follows from (22) and Theorem 2 that $\lim y_1(x) = a_1 > 0$ and $\lim y_2(x) = a_2 > 0$. But then the solution $y(x) = a_2 y_1(x) - a_1 y_2(x)$ has properties (B) and $\lim_{x \to \infty} y(x) = 0$ which contradicts (22).

II. Now we shall be concerned with the equation

(E)
$$y^{(n)} + B(x, y, y', ..., y^{(n-1)})y = 0.$$

THEOREM 4. 1° Let $B(x, u_0, u_1, ..., u_{n-1})$ be a continuous and non-negative function on the region

$$\Omega: \quad a < x < \infty, \quad -\infty < u_i < \infty, \quad i = 0, 1, \dots, n-1,$$

such that for every point $(c_0, c_1, \ldots, c_{n-1}) \neq (0, 0, \ldots, 0)$ the function $B(x, c_0, c_1, \ldots, c_{n-1})$ does not equal zero in any sub-interval of the interval (a, ∞) .

 2° Suppose there exists a continuous function F(x) such that

$$B(x, u_0, u_1, \ldots, u_{n-1}) \leqslant F(x)$$

for every point $(x, u_0, u_1, \ldots, u_{n-1}) \in \Omega$.

3° Let

$$\int_{0}^{\infty} x^{n-1} F(x) \, dx < \infty.$$

Then through every point (x_0, y_0) , $y_0 \neq 0$, $a < x_0 < \infty$, there passes at least one solution y(x) of (E) having properties (V) in (a, ∞) .

Proof. We can suppose without loss of generality that $y_0 > 0$. Let D be a set of all functions f(x) having continuous and bounded derivatives in the interval $\langle x_0, \infty \rangle$ up to the order n-1 inclusive. Let

$$||f(x)||_D = \max_{0 \le i \le n-1} \{ \sup_{\langle x_0, \infty \rangle} |f^{(i)}(x)| \}$$

be a norm of f(x). Then D is a Banach space.

Let, furthermore, C be a set of all functions g(x) having continuous derivatives of the order n-1 in $\langle x_0, x_1 \rangle$, and let

$$||g(x)||_C = \max_{0 \leqslant i \leqslant n-1} \{ \max_{\langle x_0, x_1 \rangle} |g^{(i)}(x)| \}$$

be a norm of g(x).

Now, if $g(x) \in C$, let $\bar{g}(x) = (\eta_0(x), \eta_1(x), \dots, \eta_{n-1}(x))$ be a vector defined as follows:

$$\eta_i(x) = egin{cases} g^{(i)}(x) & ext{ for } & x \ \epsilon \langle x_0, \, x_1
angle, \ g^{(i)}(x_1) & ext{ for } & x > x_1, \end{cases} \quad i = 0, 1, \ldots, n-1.$$

Let \overline{C} denote the set of all such vectors $\overline{g}(x)$ belonging to $g(x) \in C$. Let $\|\overline{g}(x)\|_{\overline{C}} = \|g(x)\|_{C}$. C and \overline{C} are Banach spaces. We define an operator \overline{T} on \overline{C} as follows: if $\overline{g}(x) \in \overline{C}$, then $\overline{T}\overline{g}(x) = u(x)$ is a solution of the equation

(23)
$$u^{(n)} + B(x, \eta_0(x), \eta_1(x), \dots, \eta_{n-1}(x)) u = 0$$

having properties (V) and passing through the point (x_0, y_0) . Write $B(x, \eta_0(x), \eta_1(x), \ldots, \eta_{n-1}(x)) = B(x, \bar{g}(x))$. Since $B(x, \bar{g}(x))$ is a continuous function in (x_0, ∞) and

$$\int_{a}^{\infty} x^{n-1} B\left(x, \, \bar{g}(x)\right) dx \leqslant \int_{a}^{\infty} x^{n-1} F(x) \, dx < \infty, \quad a \geqslant x_0,$$

such solution u(x) of (23) exists and is unique. It is clear that $\overline{T}\overline{g}(x) = u(x) \epsilon D$.

Integrating (23) and using properties (V) of u(x) we obtain

$$(24) \quad u^{(i)}(x) = \int_{x}^{\infty} \frac{(x-t)^{n-i-1}}{(n-i-1)!} B(t, \bar{g}(t)) u(t) dt, \quad i = 1, 2, ..., n-1,$$

(25)

$$u(x) = y_0 - \int_{x_0}^{\infty} \frac{(x_0 - t)^{n-1}}{(n-1)!} B(t, \bar{g}(t)) u(t) dt + \int_{x}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} B(t, \bar{g}(t)) u(t) dt.$$

From the positivity of y_0 and properties (V) of u(x) it follows that u(x) is decreasing in $\langle x_0, \infty \rangle$ and $0 < u(x) \leq y_0$. Furthermore, in view of the assumptions 2° and 3° , (24) yields

$$(26) |u^{(i)}(x)| \leq y_0 \int_{x_0}^{\infty} \frac{(t-x_0)^{n-i-1}}{(n-i-1)!} F(t) dt \leq y_0 \int_{x_0}^{\infty} (t-x_0+1)^{n-1} F(t) dt = K,$$

$$x \in \langle x_0, \infty \rangle, \quad i = 1, 2, \dots, n-1.$$

We also obtain

$$||\overline{T}\bar{g}(x)||_{D} \leqslant \max\{y_{0}, K\} = S$$

for every $\bar{g}(x) \in \bar{C}$.

We shall prove the continuity of the operator \overline{T} . Let $\overline{g}_k(x) \epsilon \overline{C}$, $\overline{g}(x) \epsilon \overline{C}$, $\|\overline{g}_k(x) - \overline{g}(x)\|_{\overline{C}} \to 0$ as $k \to \infty$. Then we have to prove that $\|\overline{T}\overline{g}_k(x) - \overline{T}\overline{g}(x)\|_D \to 0$ as $k \to \infty$.

First we are going to prove that the sequence $\{T\bar{g}_k(x)\}_{k=1}^{\infty} \equiv \{u_k(x)\}_{k=1}^{\infty}$ converges to $T\bar{g}(x) = u(x)$ as $k \to \infty$. Since $0 < u_k(x) \le y_0$ and $|u'_k(x)| \le K$ for $x \ge x_0$ (see (26)), the functions $u_k(x)$ are uniformly bounded and equicontinuous on $\langle x_0, \infty \rangle$. Also, the set of all functions $u_k(x)$, $k = 1, 2, \ldots$, is compact in any closed interval $\langle x_0, x_s \rangle$. It follows from this that it is possible to choose a subsequence $\{u_{kk}(x)\}_{k=1}^{\infty}$ of the sequence $\{u_k x\}_{k=1}^{\infty}$ such that there exists a positive function $v(x) \in D$ with $\lim_{k \to \infty} u_{kk}(x) = v(x)$

for every $x \in \langle x_0, \infty \rangle$ and $0 < v(x) \le y_0$. One can prove this statement by constructing the subsequences $\{u_{sk}(x)\}_{k=1}^{\infty}$, $s=1,2,\ldots$, converging uniformly in $\langle x_0, x_s \rangle$ such that $\{u_{sk}(x)\}_{k=1}^{\infty}$ is a subsequence of $\{u_{s-1,k}(x)\}_{k=1}^{\infty}$. Then the diagonal sequence $\{u_{kk}(x)\}_{k=1}^{\infty}$ has the desired properties.

Let $u_{kk}(x) = \overline{T}\overline{g}_{kk}(x)$, k = 1, 2, ... Clearly, $\|\overline{g}_{kk}(x) - \overline{g}(x)\|_{\overline{C}} \to 0$ as $k \to \infty$. Furthermore, the following formulae hold for $u_{kk}(x)$:

(28)
$$u_{kk}^{(i)}(x) = \int_{x}^{\infty} \frac{(x-t)^{n-i-1}}{(n-i-1)!} B(t, \bar{g}_{kk}(t)) u_{kk}(t) dt, \quad i = 1, 2, ..., n-1,$$

(29)
$$u(x) = y_{0} - \int_{x_{0}}^{\infty} \frac{(x_{0} - t)^{n-1}}{(n-1)!} B(t, \bar{g}_{kk}(t)) u_{kk}(t) dt + \int_{x_{0}}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} B(t, \bar{g}_{kk}(t)) u_{kk}(t) dt.$$

Since $B(t, \bar{g}_{kk}(t))u_{kk}(t)$ converges to $B(t, \bar{g}(t))v(t)$ for every $x \in \langle x_0, \infty \rangle$ and the functions under the sign of integration in (28) and (29) have integrable majorants $(t-x_0)^{n-i-1}F(t)y_0$, we obtain from (28) and (29) the equations

$$v(x) = y_0 - \int_{x_0}^{\infty} \frac{(x_0 - t)^{n-1}}{(n-1)!} B(t, \bar{g}(t)) v(t) + \int_{x}^{\infty} \frac{(x - t)^{n-1}}{(n-1)!} B(t, \bar{g}(t)) v(t) dt,$$

$$\lim_{k\to\infty} u_{kk}^{(i)}(x) = \int_{x}^{\infty} \frac{(x-t)^{n-i-1}}{(n-i-1)!} B(t,\bar{g}(t)) v(t) dt = v^{(i)}(x), \quad i=1,2,\ldots,n-1.$$

which means that

$$\lim_{k\to\infty} u_{kk}^{(i)}(x) = v^{(i)}(x) = (\overline{T}\bar{g}(x))^{(i)} = u^{(i)}(x), \quad i = 1, 2, ..., n-1.$$

The above reasoning allows to formulate the statement: from every subsequence of the sequence $\{u_k(x)\}_{k=1}^{\infty}$ it is possible to choose a subsequence converging to u(x) for every $x \in \langle x_0, \infty \rangle$. But this means that the sequence $u_k(x)$ converges to u(x) for every $x \in \langle x_0, \infty \rangle$.

Now, it is easy to prove that $||u_k(x)-u(x)||_D \to 0$ as $k \to \infty$. From the formulae similar to (28) and (29) holding for $u_k^{(i)}(x)$ and $u^{(i)}(x)$, $i=0,1,2,\ldots,n-1$, we obtain

$$|u_k^{(i)}(x) - u^{(i)}(x)| \leqslant \int\limits_{x_0}^{\infty} \frac{(t - x_0)^{n-i-1}}{(n-i-1)!} \left| B\left(t, \bar{g}_k(t)\right) u_k(t) - B\left(t, \bar{g}(t)\right) u(t) \right| dt$$

$$\leq \int_{x_0}^{\infty} (t-x_0+1)^{n-1} |B(t, \bar{g}_k(t)) u_k(t) - B(t, \bar{g}(t)) u(t)| dt, \quad i = 1, 2, ..., n-1,$$

$$|u_k(x) - u(x)| \le 2 \int_{x_0}^{\infty} (t - x_0 + 1)^{n-1} |B(t, \bar{g}_k(t)) u_k(t) - B(t, \bar{g}(t)) u(t)| dt$$

for $x \in \langle x_0, \infty \rangle$, and

$$\begin{split} \|u_k(x) - u(x)\|_D &\leqslant \max_{0 \leqslant i \leqslant n-1} \{ \sup_{\langle x_0, \infty \rangle} |u_k^{(i)}(x) - u^{(i)}(x)| \} \\ &\leqslant 2 \int_{x_0}^{\infty} (t - x_0 + 1)^{n-1} |B(t, \bar{g}_k(t)) u_k(t) - B(t, \bar{g}(t)) u(t)| \, dt \, . \end{split}$$

The same reasoning as above yields

$$\lim_{k\to\infty}\|u_k(x)-u(x)\|_D=\lim_{k\to\infty}\|\overline{T}\bar{g}_k(x)-\overline{T}\bar{g}(x)\|_D=0\,.$$

Thus the continuity of \overline{T} is proved.

Define an operator T_1 on C as follows: If $g(x) \in C$, then $T_1 g(x) = \overline{T} \overline{g}(x)$ for $x \in \langle x_0, x_1 \rangle$. From this definition it is evident that $||T_1 g(x)||_C \leqslant ||\overline{T} \overline{g}(x)||_D$. Furthermore, the continuity of T_1 follows from the continuity of \overline{T} , for

$$||T_1g_k(x) - T_1g(x)||_C \leqslant ||\overline{T}\overline{g}_k(x) - \overline{T}\overline{g}(x)||_D$$

and

$$||g_k(x)-g(x)||_C = ||\bar{g}_k(x)-\bar{g}(x)||_{\bar{C}}.$$

Let S be the number from (27) and let

$$(30) M = \{g(x) \in C \mid ||g(x)||_C \leqslant S\}, \ \overline{M} = \{\bar{g}(x) \in \overline{C} \mid g(x) \in M\}.$$

According to (27) we have $||T_1g(x)||_C \leq ||\overline{T}\overline{g}(x)||_D \leq S$, so $T_1M \subset M$. Let $\overline{g}(x) \in \overline{M}$ be an arbitrary element. Then

$$\max_{\left\langle x_{0},x_{1}
ight
angle }B\left(x,ar{g}\left(x
ight)
ight) \leqslant \max_{\left\langle x_{0},x_{1}
ight
angle }F(x)=N$$
 .

Thus from (23) we obtain

$$|u^{(n)}| \leqslant Ny_0.$$

This fact and the fact that $||u(x)||_D \leq S$ imply the compactness of T_1M . According to the Schauder theorem, T_1 has (at least one) fixed point in M, i.e. there exists an element $g^*(x) \in M$ such that $T_1g^*(x) = g^*(x)$ and $g^*(x) = \overline{T}g^*(x)$ on $\langle x_0, x_1 \rangle$. $\overline{T}g^*(x)$ has properties (V) in $\langle x_0, \infty \rangle$ and $(\overline{T}g(x))(x_0) = y_0 = g^*(x_0)$.

Let now $x_0 < x_1 < x_2 < \ldots < x_k \ldots$, $\lim x_k = \infty$ as $k \to \infty$. For every k we construct in $\langle x_0, x_k \rangle$ the spaces C_k , \overline{C}_k , the sets M_k , \overline{M}_k and the operators T_k , \overline{T}_k . Let $g_k(x) \in M_k$ be a fixed point of T_k and let $\overline{T}_k \overline{g}_k^*(x) = z_k(x)$. We know that

$$(32) g_k^*(x) = T_k g_k^*(x), g_k^*(x) = \overline{T}_k \overline{g}_k^*(x) \text{for} x \in \langle x_0, x_k \rangle.$$

Let $\bar{g}_k^*(x) = ([\eta_0^*(x)]_k, [\eta_1^*(x)]_k, \dots, [\eta_{n-1}^*(x)]_k)$. Construct the following sequences:

(33)
$$\{ [\eta_i^*(x)]_k \}_{k=1}^{\infty}, \{ z_k^{(i)}(x) \}, i = 0, 1, \dots, n-1.$$

From (32) we have

(34)
$$[\eta_i^*(x)]_k = z_k^{(i)}(x), \quad i = 0, 1, \dots, n-1,$$

for $x \in \langle x_0, x_k \rangle$. All functions of sequences (33) are uniformly bounded

by S. From that and from the inequality like (31) we conclude that sequences (33) are compact in any finite closed interval $\langle x_0, x_s \rangle$. It is also possible to choose a subsequence $\{[\eta_i^*(x)]_{1k}\}_{k=1}^{\infty}$ and $\{z_{1k}^{(i)}(x)\}_{k=1}^{\infty}$ uniformly convergent in $\langle x_0, x_1 \rangle$ to continuous functions $v_1^{(i)}(x)$, $i = 0, 1, \ldots, n-1$. From $\{[\eta_i^*(x)]_{1k}\}_{k=1}^{\infty}$ and $\{z_{1k}^{(i)}(x)\}_{k=1}^{\infty}$ we can choose subsequences $\{[\eta_i^*(x)]_{2k}\}_{k=1}^{\infty}$ and $\{z_{2k}^{(i)}(x)\}_{k=1}^{\infty}$ convergent uniformly in $\langle x_0, x_2 \rangle$ to continuous functions $v_2^{(i)}(x)$. It is clear that $v_1^{(i)}(x) = v_2^{(i)}(x)$ for $x \in \langle x_0, x_1 \rangle$, $i = 0, 1, \ldots, n-1$. Repeating this procedure we obtain the sequences

$$\{[\eta_i^*(x)]_{jk}\}_{k=1}^{\infty}, \{z_{jk}^{(i)}(x)\}, i = 0, 1, ..., n-1, j = 1, 2, ...,$$

such that $\{[\eta_i^*(x)]_{jk}\}_{k=1}^{\infty}$ and $\{z_{jk}^{(i)}(x)\}_{k=1}^{\infty}$ converge uniformly in $\langle x_0, x_j \rangle$ to continuous functions $v_j^{(i)}(x)$, $i=0,1,\ldots,n-1$. We have $v_j^{(i)}(x)=v_{j+1}^{(i)}(x)=\ldots$ in $\langle x_0, x_j \rangle$, $i=0,1,\ldots,n-1$. Now, if we construct the diagonal sequences $\{[\eta_i(x)]_{kk}\}_{k=1}^{\infty}, \{z_{kk}^{(i)}(x)\}_{k=1}^{\infty}$, these sequences converge to $v_j^{(i)}(x)=\lim_{j\to\infty}v_j^{(i)}(x)$ for every $x\in\langle x_0,\infty\rangle$, i.e.

(35)
$$\lim_{k \to \infty} z_{kk}^{(i)}(x) = v^{(i)}(x) = \lim_{k \to \infty} [\eta_i^*(x)]_{kk}, \quad i = 0, 1, \dots, n-1.$$

But for $z_{kk}(x)$ we have the formulae

$$z_{kk}(x) = y_0 - \int_{x_0}^{\infty} \frac{(x_0 - t)^{n-1}}{(n-1)!} B(t, [\eta_0^*(t)]_{kk}, [\eta_1^*(t)]_{kk}, \dots, [\eta_{n-1}^*(t)]_{kk}) z_{kk}(t) dt + \int_{x}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} B(t, [\eta_0^*(t)]_{kk}, [\eta_1^*(t)]_{kk}, \dots, [\eta_{n-1}^*(t)]_{kk}) z_{kk}(t) dt,$$

$$z_{kk}^{(i)}(x) = \int_{x}^{\infty} \frac{(x-t)^{n-i-1}}{(n-i-1)!} B(t, [\eta_0^*(t)]_{kk}, [\eta_1^*(t)]_{kk}, \dots, [\eta_{n-1}^*(t)]_{kk}) z_{kk}(t) dt,$$

$$i = 1, 2, \dots, n-1.$$

Using (35) and the Lebesgue's theorem we obtain

$$\begin{split} v(x) &= y_0 - \int_{x_0}^{\infty} \frac{(x_0 - t)^{n-1}}{(n-1)!} B(t, v(t), v'(t), \dots, v^{(n-1)}(t)) v(t) dt + \\ &+ \int_{x}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} B(t, v(t), v'(t), \dots, v^{(n-1)}(t)) v(t) dt, \\ v^{(i)}(x) &= \int_{x}^{\infty} \frac{(x-t)^{n-i-1}}{(n-i-1)!} B(t, v(t), v'(t), \dots, v^{(n-1)}(t)) v(t) dt, \\ &= 1, 2, \dots, n-1. \end{split}$$

It is easy to see that v(x) is a solution of (E) having the properties (V) in $\langle x_0, \infty \rangle$ and passing through the point (x_0, y_0) .

It remains to prove that v(x) can be extended to (a, ∞) . It is evident that v(x) can be extended. Let y(x) be the extension of v(x) to the largest interval (b, ∞) , $a < b < x_0$. It follows from properties (V) that

(36)
$$(-1)^{i} y^{(i)}(x_0) > 0, \quad i = 0, 1, \dots, n-1.$$

Make the change of variable by substituting $t=x_0-x$. Then, if $x \in (a, x_0)$, $t \in (0, x_0-a)$. Furthermore, we obtain the relations

(37)
$$y(x) = y(x_0 - t) = p(t), \quad y^{(i)}(x) = (-1)^i p^{[i]}(x),$$
$$i = 0, 1, \dots, n,$$

where $p^{[i]}(t)$ denotes $d^{i}p(t)/dt^{i}$. From (E) we obtain for p(t) the equation

(38)
$$p^{[n]}(t) - B(x_0 - t, p(t), -p^{[1]}(t), \dots, p^{[n-1]}(t)) p(t) = 0.$$

The initial conditions for p(t) are

(39)
$$p^{[i]}(0) = (-1)^i y^{(i)}(x_0) > 0.$$

Let $B(x_0-t,p(t),-p^{[1]}(t),\ldots,p^{[n-1]}(t))=B_*(t,p(t),p^{[1]}(t),\ldots p^{[n-1]}(t))$. $B_*(t,p_0,p_1,\ldots,p_{n-1})$ is a continuous and non-negative function in $\Omega_1\colon -\infty < t < x_0-a, \ -\infty < p_i < \infty, \ i=0,1,\ldots,n-1, \ \text{and} \ 0 \leqslant B(t,p_0,p_1,\ldots,p_{n-1}) \leqslant F(x_0-t)=F_*(t) \ \text{for every point} \ (t,p_0,p_1,\ldots,p_{n-1}) \in \Omega_1.$ $F_*(t)$ is continuous in $(-\infty,x_0-a)$. We seek a solution of the differential equation

(40)
$$p^{[n]} = B_*(t, p, p^{[1]}, \dots, p^{[n-1]})p$$

determined by the initial conditions

(41)
$$p^{[i]}(0) > 0, \quad i = 0, 1, ..., n-1.$$

It is easy to see that there exists a solution p(t) in the interval $(-\infty, x_0 - b)$ and in this interval the derivatives $p^{[i]}(t), i = 0, 1, ..., n-1$, are positive increasing functions. This follows from properties (V) of y(x) in $\langle x_0, \infty \rangle$ and from equation (40) and initial conditions (41). Furthermore, it is evident that $p^{[i]}(t), i = 0, 1, ..., n-1$, are positive increasing functions in the whole interval of the existence of p(t). We shall prove that this interval is the interval $(-\infty, x_0 - a)$. Suppose that a < b and therefore $x_0 - b < x_0 - a$ and suppose that p(t) cannot be extended to the interval $\langle 0, x_0 - b \rangle$. This means that $\lim p(t) = \infty$ as $t \to (x_0 - b)^-$. But by integrating (40) we obtain

$$p\left(t
ight) = \sum_{i=0}^{n-1} rac{p^{\left[i
ight]}\left(0
ight)}{i\,!} t^{i} + \int\limits_{0}^{t} rac{\left(t- au
ight)^{n-1}}{\left(n-1
ight)!} B_{*}ig(au,p\left(au
ight),\,\ldots,\,p^{\left[n-1
ight]}\left(au
ight)ig)p\left(au
ight)d au,$$

for $t \in (0, x_0 - b)$. From this we get

$$(42) p(t) \leqslant C + \int_{0}^{t} (x_0 - b - \tau)^{n-1} F_*(\tau) p(\tau) d\tau,$$

where

$$C = \sum_{i=0}^{n-1} \frac{p^{[i]}(0)}{i!} (x_0 - b)^i.$$

Now, the Gronwall-Bellman lemma yields

$$p(t) \leqslant C \exp \int_{0}^{t} (x_0 - b - \tau)^{n-1} F_*(\tau) d\tau.$$

Since $F_*(t)$ is continuous on $\langle 0, x_0 - b \rangle$, we see that $\lim p(t) < \infty$ as $t \to (x_0 - b)^-$. This is a contradiction which proves that p(t) can be extended to $\langle 0, x_0 - b \rangle$. But this implies the existence of p(t) in $(-\infty, x_0 - a)$ and therefore the existence of y(x) in (a, ∞) . Now, it is clear that y(x) is a solution of (E) having properties (V) in (a, ∞) and passing through the point (x_0, y_0) .

THEOREM 5. Let the hypotheses of Theorem 4 be satisfied. Then to every real number $m_0 \neq 0$ there exists a solution y(x) of (E) having properties (V) in (a, ∞) and such that

$$\lim_{x \to \infty} y(x) = m_0 \quad as \quad x \to \infty.$$

Proof. Without loss of generality we can suppose that $m_0 > 0$. Let $(x_0, y_0), y_0 > 0, x_0 \epsilon(a, \infty)$, be an arbitrary point. According to Theorem 4 through this point there passes a solution u(x) of (E) having properties (V) in (a, ∞) . We have

$$u(x) = y_0 - \int_{x_0}^{\infty} \frac{(x_0 - t)^{n-1}}{(n-1)!} B(t, u(t), u'(t), \dots, u^{(n-1)}(t)) u(t) dt + \int_{x}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} B(t, u(t), u'(t), \dots, u^{(n-1)}(t)) u(t) dt$$

and

$$\lim_{x\to\infty} u(x) = d = y_0 - \int_{x_0}^{\infty} \frac{(x_0 - t)^{n-1}}{(n-1)!} B(t, u(t), u'(t), \dots, u^{(n-1)}(t)) u(t) dt.$$

It is clear that $d < y_0$. On the other hand, we obtain the estimate

$$y_0-d \leqslant y_0 \int_{x_0}^{\infty} \frac{(x_0-t)^{n-1}}{(n-1)!} F(t) dt = y_0 L,$$

where

(43)
$$L = \int_{x_0}^{\infty} \frac{(x_0 - t)^{n-1}}{(n-1)!} F(t) dt$$

depends only on x_0 . For d we obtain the estimate

$$(44) y_0(1-L) \leqslant d < y_0.$$

Let U be the set of all those numbers d from $(0, m_0)$ for which there exists a solution u(x) of (E) having properties (V) in (a, ∞) such that $\lim u(x) = d$ as $x \to \infty$. We shall prove that $\sup U = m_0$. For suppose we have $\sup U < m_0$. Then put $y_0 = m_0$ and choose x_0 such that $\sup U > m_0(1-L)$. It follows from (43) that this is possible. Through the point (x_0, m_0) there passes a solution u(x) of (E) having properties (V) in (a, ∞) such that for $d = \lim u(x)$ we have (according to (44))

$$\sup U < m_0(1-L) \leqslant d < m_0.$$

This is a contradiction which proves that $\sup U = m_0$. Now, there are two possible cases:

- 1) $m_0 \in U$. But this means that there exists a solution u(x) of (E) having properties (V) in (a, ∞) and such that $\lim u(x) = m_0$ as $x \to \infty$. In this case the Theorem is proved.
- 2) $m_0 \notin U$. Then there exists a sequence $\{d_k\}_{k=1}^{\infty}$, $0 < \varepsilon < d_k < m_0$, $d_k \in U$, converging to m_0 as $k \to \infty$. Let $y_k(x)$ be a solution of (E) having properties (V) in (a, ∞) such that $\lim y_k(x) = d_k$ as $x \to \infty$. Choose x_0 such that L < 1 and consider the sequence $\{y_k(x_0)\}_{k=1}^{\infty}$. It is clear that $y_k(x_0) > \varepsilon$. We prove that $y_k(x_0) \leqslant m_0/(1-L)$. Let the inequality $y_{k_1}(x_0) > m_0/(1-L)$ be satisfied for k_1 . Then the solution of (E) having properties (V) in (a, ∞) and passing through the point $(x_0, y_{k_1}(x_0))$ has a limit d_{k_1} as $x \to \infty$ for which (according to (44)) we have $y_{k_1}(x_0)(1-L) \leqslant d_{k_1}$. From this inequality we obtain a contradiction

$$m_0 = m_0(1-L)/(1-L) < y_{k_1}(x_0)(1-L) \leqslant d_{k_1}.$$

This contradiction proves that the sequence $\{y_k(x_0)\}_{k=1}^{\infty}$ is also bounded from above. Therefore we can choose a subsequence $\{y_{1k}(x_0)\}_{k=1}^{\infty}$ which is convergent. Suppose we have $\lim_{k\to\infty}y_{1k}(x_0)=y_0$. It is clear that $\varepsilon\leqslant y_0\leqslant m_0/(1-L)$. Now, consider the sequence $\{y_{1k}(x)\}_{k=1}^{\infty}$. Suppose that $\lim y_{1k}(x)=d_{1k}$ as $x\to\infty$. The sequence $\{d_{1k}\}_{k=1}^{\infty}$ is a subsequence of $\{d_k\}_{k=1}^{\infty}$ and therefore $\lim d_{1k}=m_0$ as $k\to\infty$.

Furthermore, for $y_{1k}(x)$ there hold the relations

$$(45) y_{1k}(x) = y_{1k}(x_0) - \int_{x_0}^{\infty} \frac{(x_0 - t)^{n-1}}{(n-1)!} B(t, y_{1k}(t), \dots, y_{1k}^{(n-1)}(t)) y_{1k}(t) + \int_{x_0}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} B(t, y_{1k}(t), \dots, y_{1k}^{(n-1)}(t)) y_{1k}(t) dt,$$

$$(46) y_{1k}^{(i)}(x) = \int_{x}^{\infty} \frac{(x-t)^{n-i-1}}{(n-i-1)!} B(t, y_{1k}(t), \dots, y_{1k}^{(n-1)}(t)) y_{1k}(t) dt,$$

$$i = 1, 2, \dots, n-1.$$

It is easy to see that $0 < y_{1k}(x) \leqslant m_0/(1-L)$ and

$$|y^{(i)}(x)| \leq \frac{m_0}{1-L} \int_{x_0}^{\infty} (t-x_0+1)^{n-1} F(t) dt = S_1, \quad i=1,2,\ldots,n-1.$$

From this we get $||y_{1k}(x)||_D \leq \max\{m_0/(1-L), S_1\}$, which means that the functions $y_{1k}^{(i)}(x)$, $i=0,1,\ldots,n-1$, $k=1,2,\ldots$, are uniformly bounded in $\langle x_0,\infty\rangle$. It follows from this that the functions $y_{1k}^{(i)}(x)$, $i=0,1,\ldots,n-2$, $k=1,2,\ldots$, are equicontinuous in $\langle x_0,\infty\rangle$. But from the relation

$$|y_{1k}^{(n-1)}(x)| \leqslant rac{m_0}{1-L} \int\limits_{x_0}^{\infty} (t-x_0+1)^{n-1} F(t) dt < \infty$$

we get that the functions $y_{1k}^{(n-1)}(x)$ are also equicontinuous in $\langle x_0, \infty \rangle$. Now, using the same reasoning as in the proof of Theorem 4 one can choose a subsequence $\{y_{kk}(x)\}_{k=1}^{\infty}$ of the sequence $\{y_{ik}(x)\}_{k=1}^{\infty}$ such that

(47)
$$\lim_{k \to \infty} y_{kk}(x) = y(x), \quad \lim_{k \to \infty} y_{kk}^{(i)}(x) = y^{(i)}(x), \quad i = 1, 2, \dots, n-1,$$

for $x \in \langle x_0, \infty \rangle$. Furthermore,

(48)
$$\lim_{k\to\infty} y_{kk}(x_0) = y_0, \quad \lim_{k\to\infty} \lim_{k\to\infty} y_{kk}(x) = \lim_{k\to\infty} d_{kk} = m_0.$$

For $y_{kk}(x)$ we have formulae like (45) and (46). Then, using (47) and (48) and the Lebesgue theorem, we get

$$(49) y(x) = y_0 - \int_{x_0}^{\infty} \frac{(x_0 - t)^{n-1}}{(n-1)!} B(t, y(t), y'(t), \dots, y^{(n-1)}(t)) y(t) dt + \int_{x}^{\infty} \frac{(x-t)^{n-1}}{(n-1)!} B(t, y(t), y'(t), \dots, y^{(n-1)}(t)) y(t) dt,$$

(50)
$$y^{(i)}(x) = \int_{x}^{\infty} \frac{(x-t)^{n-i-1}}{(n-i-1)!} B(t, y(t), y'(t), \dots, y^{(n-1)}(t)) y(t) dt,$$
$$i = 1, 2, \dots, n-1.$$

This means that y(x) is a solution of (E) having properties (V) in (x_0, ∞) and passing through the point (x_0, y_0) . Furthermore, the same reasoning as that used in the proof of the continuity of \overline{T} in the proof of Theorem 4 yields $||y_{kk}(x) - y(x)||_D \to 0$ as $k \to \infty$. Thus y_{kk} converges uniformly to y(x) in $\langle x_0, \infty \rangle$. Therefore

$$m_0 = \lim_{k \to \infty} \lim_{k \to \infty} y_{kk}(x) = \lim_{k \to \infty} \lim_{k \to \infty} y_{kk}(x) = \lim_{k \to \infty} y(x).$$

According to Theorem 4, y(x) can be extended over (a, ∞) with the conservation of properties (V). This concludes the proof of Theorem 5.

Reçu par la Rédaction le 17. 1. 1966