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MONOTONE SOLUTIONS OF SOME DIFFERENTIAL EQUATIONS

BY

MARKO S VE C (BRATISLAVA)

Throughout the whole paper we suppose n to be an odd integer.
The aim of this paper is to prove the existence of a solution of the dif-
ferential equation

(E) YO +B@,y, 9, ..., 4" Ny =0
which has the properties:

(—1)'yx) >0 or (—1)*'9yO(x) >0, i=0,1,...,0—1,

(V) ;E,Igy(i)(m):oa. t=1,2,...,n—1,

limy (x) exists and is not zero.
T—00

I. We shall be concerned at first with the linear differential equation
(1) ¥ +Q(2)y = 0.

We suppose that ¢ (x) is a non-negative continuous function on the
interval (a, o), —oo < @, which does not equal zero in any sub-interval
of (a, o). Under these conditions we prove some lemmas and theorems.

LEMMA 1. The solution y(x) of (1), which is determined by the initial
conditions

y© (a,) =0, s=0,1,...,n—2, we(a, o0),
YD () # 0,

has no zero less than x, and for x << x, it holds:

(2)

3) (=1 D2) >0 or (—1)"*yD(z) >0, i=0,1,...,n—1.

Proof. Let t = xy—x. Then Q(x,—1t) = Q*(t) >0, y(2) = y(z,—1)
= u(t) and
diu(t)

(4) ¥@) = (=1 —=, i=0,1,...,m.
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From (1) we get for w(¢) the equation

n

. v
(5) F—Q (Hu(t) =0,

and from (2) the initial conditions

& u (0 ,
s =0, +=0,1,...,n—2,
6
(6) d"u(0)
a7

Suppose y"~V(zy) >0. Then d"'u(0)/dt"*>0. Next from (5)
and (6) we have

a u(t) ,
7 >0 for ¢>0;,i=0,1,...,n—1,
and, according to (4), (—1)'y(x) >0 for z< w,, ¢ = 0,1, n—1.

For 4™ (m,) < 0 we get (—1)" 'y (x)>0,i=0,1, ,n——l

THEOREM 1. Hquation (1) has a solution vy () ha/umg the following
properties:

(7) (——l)iy(i)(w)>0_or(—1)’:+1y(i)(w)>0, i=0,1,...,n—1,

for xe(a, 0o);

(8) limyD(@) =0, i=1,2,...,n—1;
T—>00
(9) limy (») exists and is finite.
I—00

Proof. Let moe(d, oco) and let {x;}3>, be a sequence of numbers such
that xpe(a, 00), @) < ®g,,, lima, = co. Let yx(x) be a solution of (1)

k—co

which satisfies at 2, conditions (2) and let y{*(z,) >0,

(10) 2 (94 (4

By the use of Lemma 1 we have for o < x,
(11) (—1)°yP(2) >0, s=0,1,...,n—1.

Let now z(x), j=0,1,...,n—1, be a fundamental system of
solutions of (1) determined by the initial conditions

: 0, ©#j .
(12) & (@) = 1’ gyt Ti= 0515 55, 0—1,
, ==
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Then we can express y(x) as follows:

n—1

(13) ve(@) = Y da@),  yP (o) = o).

=0

Furthermore, condition (10) yields

n—1
(14) D) [P =1,

i=o

Hence it follows that the sequences {¢{}®,, i =0,1,...,n—1,
are bounded. So it is possible to choose convergent subsequences. Let
the sequences {0_&")};0'11, 1 =20,1,...,n—1, be so chosen and let
(15) lime® =, i=0,1,...,n—1.
k—o00

Then, from (13), we have

n—1 n—1
(16) Limy () = lim 2 2z (2) = lim ¢ z; (2)
k—00 k—o00§0 i—o Koo
n—1
i a2 (2) = y (@)
1=0

The function y(«) is a non-trivial solution of (1), as it follows from
formula (14).
Now, from (11) and (13) we get

17 Hm(—-1)'90(x) = (-1’9 (@) >0, s=0,1,...,n—1,

k—s00

for ze(a, o0), and from (1)
(18) y™(z) < 0.

From the fact that y(x) is a non-trivial solution of (1) and from (17)
and (18) it is easy to prove that

(—1)°y® (@) >0 for we(a, ), i=0,1,...,n—1,
limy®x) =0, s=1,2,...,0—1,
L—00

limy (x) exists and is non-negative and finite.
T—00

In the case yy" V(xx)< 0 the same type of reasoning may be

used to prove the existence of a solution of (1) having properties (7)-(9).
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THEOREM 2. Let y(x) be a non-trivial solution of (1) having the prop-
erties

lim y@ @) =0, i=1,2,...,n—1,

(B) T—>00
lim y(x) ewists and is finite.
T—00
Then hmy =0 iff
(19) [ 2" 'Q(m)do = oo.

Proof. Suppose y(«) is a non-trivial solution of (1) having properties
(B) and let hmy(m) = 0 and f 2"7'Q (r)dxr < oco. Then there exists a num-
ber ¢ such that

[e.e]

f (1— ey (1) dt < 1.

c

1
7(n—1)!

(20)

By integrating (1) and using the properties of y(x) we get

F (w— )t

yio) = [ e @y

The function y(x) is bounded on ¢, co). Therefore from the last
equation we have

t— )n 1
sup [y ()] < sup [y (x !f *-*TQ
{€,00) {¢,00) ’I ‘—1)

But sup |y (x)] > 0. This last inequality yields a contradiction to (20).
{€500)
Let now

f‘nﬁlQ(’/)dt =o0, limy@) =a>0

Z—20

and y(x) have properties (B). Then there exists a number x, such that
for ¥ > x,

(21) y(x) > 5

By integrating equation (1) and using properties (B) we obtain

°f’( )“

)dt
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and from this

—atylo) = [0 ewatar

Now, according to (21) and the hypothesis, we obtain for = > x,
the contradiction
PR
—aty(x >—2—af Q(t)dt = oo.

x

Definition. We shall say that w(x) has properties (V) in (b, oo)
if for x > b

(— 1)) >0 or (—1)"'yD@)>0, i=0,1,2,...,0—1,

limy® (@) =0, i=1,2,...,n—1,

T—00

limy (x) exists and is not zero.

L—00

THEOREM 3. Let

(22) fw” 'Q (z)da < oo.

Then equation (1) has only one solution (except for the linear dependence)
having properties (V) in (a, oo).

Proof. The proof is by contradiction. Suppose y,(x) > 0 and y,(x) > 0
are two linearly independent solutions of (1) having properties (V). Then
it follows from (22) and Theorem 2 that lim y,(x) = ¢, > 0 and limy,(x)
= a, > (0. But then the solution y(x) = a,¥,(®)— a,%,(x) has properties
(B) and limy(xz) = 0 which contradicts (22).

L0

II. Now we shall be concerned with the equation
(E) yB@,y, Y, .,y )y = 0.

THEOREM 4. 1° Let B(x, %y, Uy, ... Uy, ;) be a continuous and non-
negative function on the region

Q: a<zr<oo, —ow<Uy<oo, 1=0,1,...,n—1,

such that for every point (cgy Cyy...yCp_q) # (0,0,...,0) the function
B(x, ¢y Cyy...yy_y) does not equal zero in any sub-interval of the interval
(a, o).
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2° Suppose there exists a continuous function F(x) such that
B2, gy Uyy .oy Un_y) < F(2)

for every point (x, we, Uy, ..., Up_1) €.
3° Let

f 2" 'F (z)dx < oco.

Then through every point (xy, Yo)y Yo 7+ 0, a << 2y << o0, there passes
at least one solution y(x) of (E) having properties (V) in (a, co).

Proof. We can suppose without loss of generality that y, > 0.
Let D be a set of all functions f(«) having continuous and bounded de-
rivatives in the interval <{z,, co) up to the order n—1 inclusive. Let

If(@)lp = max {sup |[f(x)[}

0<i<n—1 (T,00)

be a norm of f(x#). Then D is a Banach space.

Let, furthermore, ¢ be a set of all functions ¢g(«) having continuous
derivatives of the order n—1 in <z,, x;)>, and let

lg(@)lle = max {max |g®(x)]}
0<isn—1 (®),%;>

be a nmorm of ¢().

Now, if g(x)eC, let F(x) = (no(), 71 (®), ..., 7u_1(2)) be a vector
defined as follows:

gU@)  for @ ela, @),
g(i)(ml) for x>,
Let C denote the set of all such vectors §(x) belonging to g(wx)eC.
Let ||G(x)llg = llg(«)|lc. € and C are Banach spaces. We define an operator

T on C as follows: if §(x)eC, then T§(x) = u(x) is a solution of the equa-
tion

(23) u(n)+B(w1 No(®)y N1 (X)y .y 77n_1(90))“ =0

having properties (V) and passing through the point (a,,y,). Write

B(x, no(@), 71(2), ..., Nu_1(@)) = B(z, F(x)). Since B(w, j(z)) is a con-
tinuous funection in <(w,, co) and

fa:" ‘Bz, j(x))d fa:” 'F(r)de < co, a=x,,

such solution u(x) of (23) exists and is unique. It is clear that 7§(x)
= u(x)eD.
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Integrating (23) and using properties (V) of u(x) we obtain

00 (m__ t)n_i_l

(24) u(i)(w):f(n—:?_l—)!B(t,g(t))u(t)dt, P—=1,2, . n—1,
(25)

Fome— )t Cle—tt
(@) =yn—fWB(t,g(t))u(t)dt+mfWB(t,g(t))u(t)dt.

From the positivity of y, and properties (V) of u(«) it follows that
u(x) is decreasing in <{(x,, o) and 0 << u(x) < y,. Furthermore, in view
of the assumptions 2° and 3% (24) yields

o0

F(t)dtgyof (l—ito+1)""F(t)dt = K,

o]

(26) 1) <y, [

(t—mo)""

(n—21—1)!
wo .TO
rxelwy,o0), t=1,2,...,n—1.
We also obtain
(27) ITG(@)llp < max{y,, K} =8

for every g(x)eC.

We shall prove the continuity of the operator 7. Let gi(x)eC,
gz eC, |gx(®)—F(2)|g =0 as k —>oco. Then we have to prove that
\Tge(@) =T (@)llp - 0 as k — oo. B o

First we are going to prove that the sequence {7'gy(x)}i.; = {ux(®)}i1
converges to Tg(x) = u(x) as k — oo. Since 0 < ux(z) < y, and |ug(z)| < K
for x > x, (see (26)), the functions u;(x) are uniformly bounded and equi-
continuous on {x,, o). Also, the set of all functions uy(x), ¥ =1,2,...,
is compact in any closed interval {z,,x;>. It follows from this that it
is possible to choose a subsequence {ux(2)}i., of the sequence {wu;x}y_,
such that there exists a positive function v(z)eD with limu(2) = v(x)

k—s00
for every wxedw,, c0) and 0 < v(x)<y,. One can prove this sta-
tement by constructing the subsequences {ug.(x)}i ., s =1,2,..., con-
verging uniformly in {(x,, 2,> such that {ug(2)}7_, is a subsequence of
{us_yx(x)}i_,. Then the diagonal sequence {wu;(z)}z_, has the desired
properties. :
Let ukk(a)) = Tgkk(.’,(?), k= 1, 2, o Glearly, Hgkk(:c)—g(w)na -0 as
k — oo. Furthermore, the following formulae hold for .. (x):

e8) o) = [ =L

xr

B(t, G (t) uw(t)dt, i=1,2,...,n—1,
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% O_tn_l
29w —p— [ 7Y

B(t, G (8)) wn (t) dit +

oo (w_t)n_1 ]
+mf WB(t7gkk(t))ukk(t)dt.

Since B(t, fux (1)) uie(t) converges to B(t, F(t))v(t) for every ve<a,, co)
and the functions under the sign of integration in (28) and (29) have
integrable majorants (t——wo)”‘"i‘ll?’(t)yo, we obtain from (28) and (29)
the equations

v =w— [ S gy, t)+f Bl go)r(nar,

Ty

limu{d(x) = ftn:z)—ﬁB gi)o)dt = o9 (@), =1,2,...,0—1.

k—o0

which means that

]}imuﬁc’}z(m) = o) = (Tg(2))? = uD(w), i=1,2,...,0—1.

The above reasoning allows to formulate the statement: from every
subsequence of the sequence {u;(x)}%_, it is possible to choose a subse-
quence converging to u(x) for every wxelw,, co). But this means that
the sequence w,(x) converges to w(x) for every ze{w,, 0o).

Now, it is easy to prove that |Ju.(z)—u(x)|p - 0 as k — co. From
the formulae similar to (28) and (29) holding for «{(z) and (),
t=0,1,2,...,n—1, we obtain

o0 i

) () — w0 ()] < f _'@_ |B(t,gk(t))uk(t)~B(t',g(t))u(t)rdt
< f(t—mo—l—l)""lb’(t,gk(t))uk(t)—B(t,g(t))u(t)]dt, i =1,2,...,n—1,

lua (@) — w(@)| <2 [ (E—wy+ 1" [B(t, gic(t)) wa (1) — B2, § (1)) ut)]

for xe(w,, co), and

() —u(@)lp < max {sup |uf(@)—u(w)|}

0<iKN—1 (&y,00)

<2 [ =@+ 1) |B(t, 7 (1) () —B(t, 7(0) u(t)|ds

g
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The same reasoning as above yields

Lim oty () — w (@) | p :]}imllTﬁk(w)—Tﬁ(fv)Hp = 0.

—>00

Thus the continuity of 7 is proved.
Define an operator 7', on C as follows: If g(x)eC, then T, ¢g(x)
— T§(x) for xelx,, x,>. From this definition it is evident that |T,g(z)|o
< |[Tg(«)|lp. Furthermore, the continuity of 7', follows from the conti-
nu1ty of T, for

Ty gr(2) —T1 g (@) llo < |1TGe (%) — TG ()|l p
and

lgx (@) —g(@)lle = lIgx(2) —g(2)la-
Let § be the number from (27) and let

(30) M = {g(2)0] llg(@)lle < 8}, M = {G(x)eC|g(x)eM}.

According to (27) we have [|T,g(2)|lc < \Tg (x)||p < 8,80 T,M M.
Let g(x)e M be an arbitrary element. Then

max Bz, g(»)) < max F(z) = N.
(TsT1> (%% >

Thus from (23) we obtain
(31) [ut] < Ny,.

This fact and the fact that |u(2)]p < S imply the compactness
of T\M. According to the Schauder theorem, 7', has (at least one) fixed
point in M, i.e. there exists an element g*(x)eM such that T,¢*(r)
= g*(z) and g*(®) = Tg*(x) on <x,,x,>. Tg*(x) has properties (V) in
(g, 00) and (T ())(zg) = yo = g*(x,).

Let now zo<a@; <@, <...<®..., limz, = co as k — oco. For
every k we construct in {(x,, ;> the spaces Oy, Oy, the sets M, M, and
the operators T, T. Let g, (x) e M} be a fixed point of T and let T (2)
= zr(x). We know that

(32) gri(@) = Tegn(x), gi@) = Thgi(@) for melmy, me).

Let g (#) = ([ng () Iy [07 (@) Ly -+ -5 (-1 (@) ]i) - Construct the following
sequences:

(33) i@, @), i=0,1,...,n—1.
From (32) we have
(34) [98 (@) = 2P (®), ©=0,1,...,n—1,

for wedlx,, x;>. All functions of sequences (33) are uniformly bounded
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by §. From that and from the inequality like (31) we conclude that se-
quences (33) are compact in any finite closed interval (x,, z;>. It is also
possible to choose a subsequence {[#}(x)]}i., and {z{2(x)}X , uniformly
convergent in (x,, #,> to continuous functions v\’(w), s = 0,1, ..., n—1.
From {[7; (2)]ix}rr, and {zﬁ)(m)}j‘;l we can choose subsequences {[%7 ()]s iy
and {25 ( ,2 2)}5-1 convergent uniformly in {z,, z#,> to continuous functions
v (x). It is clear that v (x) = o (x) for welwq, >, ¢ =0,1,...,n—L.
Repeating this procedure we obtain the sequences

{0 (@) iy @)}, 6 =0,1,...,n—1,j=1,2,...,

such that {{7f(#)lx}, and {&} (@)}, converge uniformly in <(,, 2;>
to continuous functions v(‘)(m), i=0,1,...,n—1. We have o} (m)

— o) (@) =... in <@, @), i =0,1, ey R— 1. Now, if we construct
the diagonal sequences {{m(m)]kk},;";l, {zﬂ(m)},}";l, these sequences converge
to v (z) = _1im'v§-i)(as) for every xe{m,, o), i.e.

J—>00
(35)  lime(x) = oW (2) = lim [} (@), ¢=0,1,...,n—1.
k00 k—o0

But for z,.(x) we have the formulae

2er(®) = Yo— MB(t (g (8) Dty (3 (8 Dy« -« =2 (8) Tk 2 (8) A+
(n—1)!
o0 R 1
+f (n— )1 B(t, [%6 (6) Taxs (01 (D)kwey -+ [77;~1(t)]kk)zkk(t)dt,

__t Nt 1
f i1 B T Ok DOy -y Dha (D et
t=1,2,...,a—1,

Using (35) and the Lebesgue’s theorem we obtain

v(w)=yo—fMB(tw(t),v'(t),... oI (1) 0 (t) i+

, o (o—1 w1 ’ -
+f (’n,—]_)' B(ty 'U(t),'l) (t), ceey ¥ (t))q](t)dty

% n-i—1
q;@(m) = f%ﬁ:?—-——B(t v(t), v’ (1), . .,q)(”‘l)(t))v(t)dt
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It is easy to see that v(x) is a solution of (E) having the properties
(V) in <{@,, co) and passing through the point (w,, y,).

It remains to prove that »(z) can be extended to (a, oo). It is evident
that »(x) can be extended. Let y(x) be the extension of v(x) to the largest
interval (b, o), a < b << x,. It follows from properties (V) that

(36) (—1)'y9(x)) >0, i=0,1,...,n—1.

Make the change of variable by substituting ¢ — @,— . Then, if
ze(a, oy, 1e{0, zy—a). Furthermore, we obtain the relations

(37) y(@) =y@—1t) =p(t), 3y (@) = (—1)p(a),
t=0,1,...,n,

where pUl (1) denotes d'p(¢)/dt’. From (B) we obtain for p(t) the equation

(38) ") —Blzo—t, p(t), —pM (@), ..., p" (@) p(t) = 0.
The initial conditions for p(t) are
(39) p1(0) = (= 1)y (@) > 0. |
Let B(wy—1,p(t), —pM(1),..., p" (1)) = Bult, p (1), pM (1) ... p" (1))
By (tyPos P1s---;Pay) is a continuous and non-negative function in
Q: —co<I<@y—a, —c0<Py<oo, i=0,1, ceey—1, and 0<

Bt Pos Py vy Pna) < Fwy—1t) = Fy(t) for every point (¢, p,,py, ...
oy Pu_1)€f2,. Fy(t) is continuous in (— oo, x,—a). We seek a solution
of the differential equation

(40) P = B, (t,p,p", ..., p" N)p

determined by the initial conditions
(41) p10) >0, i=0,1,...,n—1.

It is easy to see that there exists a solution p(#) in the interval
(— oo, ,—b) and in this interval the derivatives p'(¢),i = 0,1, ..., n—1,
are positive increasing functions. This follows from properties (V) of
¥ (@) in {zy, co) and from equation (40) and initial conditions (41). Fur-
thermore, it is evident that pl(t), i = 0,1,...,n—1, are positive increasing
functions in the whole interval of the existence of p(t). We shall prove
that this interval is the interval (— oo, 2,—a). Suppose that @« < b and
therefore x,—b < x,—a and suppose that p(t) cannot be extended to
the interval (0,x,—b>. This means that limp(t) = co as t — (z,—b)".
But by integrating (40) we obtain

et [ 0) . tt-— n—1
p(t) = 2]%5—)#'1‘ {(——:TL_' B*(‘ﬁ]’("’); ceey p{n_ll(r))p(r)d77

i=0

Colloquium Mathematicum, t. XVIII 2
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for te<0, 2,—b). From this we get

t
(42) P(t) < C+ [(2y—b—7)" ' Fu(r)p(v)dr,
[]

where

=0

Now, the Gronwall-Bellman lemma yields
[
p(t) < Cexp [ (wg—b—7)"""Fy(r)dr.
. ]

Since F,(t) is continuous on <0, x,—b>, we see that limp () < co
ag t — (w,—b)~. This is a contradiction which proves that p(#) can be
extended to <0, x,—b). But this implies the existence of p(t) in (— oo,
z,—a) and therefore the existence of y(x) in (a, co). Now, it is clear that
y{x) is a solution of (E) having properties (V) in (a, co) and passing
through the point (z,, ¥,).

THEOREM 5. Let the hypotheses of Theorem 4 be satisfied. Then to
every real number m, % 0 there exvists a solution y(xz) of (E) having prop-
erties (V) in (a, co) and such that

limy(x) =m, as & — oo.
I—00

Proof. Without loss of generality we can suppose that m, > 0.
Let (zq, Yo), ¥, > 0, 2y¢(a, o0), be an arbitrary point. According to Theo-
rem 4 through this point there passes a solution w(x) of (E) having prop-
erties (V) in (a, c0). We have

u (@) = Yo— f %B(t,u(n, w (), ooy w0 u(t) dt+

Ty

+ f iw_—-tl;B(t’ w(t), w (8)y ..., WS (O))u(t)de

(n—1)!
and
. c’o(wo_t)nrl ’ n—1
im u(a) = d = yo_xf W-B(t, w(d), w (1), ..., w0 u(t)dt.

It is clear that d < y,. On the other hand, we obtain the estimate

oo(5'3'o_t)n~1
o<y, B0
Yo Yo (n—1)!

Ty

F(tydt = y,L,
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where

-—t n-1
(43) f o (i)t

Zo

depends only on xz,. For d we obtain the estimate
(44) Yo(l—1L) <d < y,.

Let U be the get of all those numbers d from (0, m,> for which there
exists a solution u(x) of (E) having properties (V) in (a, co) such that
limu(x) = d as ¢ - co. We shall prove that sup U = m,. For suppose
we have sup U < m,. Then put y, = m, and choose z, such that sup U
> my(1—L). It follows from (43) that this is possible. Through the
point (x,, m,) there passes a solution u(z) of (E) having properties (V)
in (a, oo) such that for d = limu{x) we have (according to (44))

sup U < mo(1—1L) < d < m,.

This is a contradiction which proves that sup U = m,.

Now, there are two possible cases:

1) myeU. But this means that there exists a solution u(x) of (E)
having properties (V) in (a, oco) and such that limu(z) = m, as & — oo.
In this case the Theorem is proved.

2) my¢U. Then there exists a sequence {dy}p.,, 0< &< dy << m,,
drelU, converging to m, a8 k£ — oco. Let y,(x) be a solution of (E) having
properties (V) in (@, co) such that limy,(#) = d; as x — oco. Choose z,
such that L <1 and consider the sequence {y;(z,)}%-.. It is clear that
Yi(2y) > &. We prove that y,(z,) < my/(1—L). Let the inequality Yr, ()
> m,f(1— L) be satisfied for k,. Then the solution of (E) having proper-
ties (V) in (@, co) and passing through the point (wﬂ, ykl(mo)) hag a limit dy,
as & — oo for which (according to (44)) we have Y, (20) (1 — L) < dy, -
From this inequality we obtain a contradiction

My = mo(1—L)[(1—L) < yp, (0,) (1 —L) < dy, .

This contradiction proves that the sequence {yi(z,)}r, is also
bounded from above. Therefore we can choose a subsequence {yz(®,)}%+
which is convergent. Suppose we have limy,;(x,) = %,. It is clear that

e < Yo < myf/(1—L). Now, consider the sequence {y,.(x)}%,. Suppose
that limy;(x) = djx as @ — oo. The sequence {d;}7., 18 a subsequence
of {di}%>, and therefore limd,; = m, as k — oco.
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Furthermore, for v,;(«x) there hold the relations

1

(45) Yie(®) = Yue(@o) — f(—aiﬂ— (t Y1 (), - 73/{:%_1 ))ylk(t)+

+ f 7ylk(t)1 ssey yg,l:'_l) t))ylk(t)dta

( _t)n_-'a 1

(’n—z_l).B(t? Yu(t), .- 7?/{712 N ( ))?/Ik(t)dt,

(6) o) = f
t=1,2,...,n—1.

It is easy to see that 0 < y(z) < my/(1—L) and

f (t—@g - 1" F()dt = 8,, §=1,2,...,n—1.

(%)
|y () <77
Ty

From this we get [y,x(®)|p < max{m,/(1—L),S,}, which means
that the functions y{R(x), i =0,1,...,n—1, k=1,2,..., are uni-
formly bounded in <w,, co). It follows from this that the functions %{}(x),
t=0,1,...,n—2, k=1,2,..., are equicontinuous in (x,, o0). But
from the relation

Y5 ()] < f(t—mo+1)”*1ﬁ‘(t)dt< oo

1—L

we get that the functions y{%~ 1)(:c) are also equicontinuous in <{z,, co).
Now, using the same reasoning as in the proof of Theorem 4 one can
choose a subsequence {y.(z)}z-, of the sequence {y;(z)}i., such that

(47)  limyg(e) =y(z), lmyl(e) =y9x), i=1,2,...,n—1,
k—o0 k—o00

for zedx,, o). Furthermore,

(48) l}imykk(mo) = Yo, izjm ;imykk(m) = ’]Cimdkk = M.
For y..(#) we have formulae like (45) and (46). Then, using (47)
and (48) and the Lebesgue theorem, we get

49)  y() =yo—f%

Zo

B(t,y ),y @), ..., y" V@)y(t)di+

oo(m_mt)n-l ) .
+fm3(t,y(t>,y(t),---,y‘ (t)y (1t

x
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[e.9]

) _tn_i_l
(50)  y“(@) =f%B(t,y(thy’(ﬂ,---,y‘"‘”(t))y(t)dt,

t=1,2,...,n—1.

This means that y(x) is a solution of (E) having properties (V) in
(g, o0) and passing through the point (z,, y,). Furthermore, the same
reasoning as that used in the proof of the continuity of 7 in the proof
of Theorem 4 yields |[yu(®)—y(x)|p =0 as &k — oco. Thus yz; converges
uniformly to y(x) in {z,, o0). Therefore

my = lm limyg,(x) = Im limyy(2) = limy(z).
k—sco k—o0 k—so0 k—soc k00

According to Theorem 4, y(x) can be extended over (a, co) with
the conservation of properties (V). This concludes the proof of Theorem 5.

Regu par la Rédaction le 17. 1. 1966



