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It is well known [2] that for the linear differential equations the
uniqueness of solutions of a boundary value problem implies their exist-
ence. For the non-linear differential equations this interdependence of
uniqueness and existence is much more complicated and involves, in
general, besides the non-linear equation under consideration, an appro-
priate family of linear equations [1], [3], [4].

However, as we shall show in the present paper, in the special case
of the non-linear second-order differential equation it is possible to infer
the existence of solutions of a boundary value problem immediately
from the uniqueness of solutions of this problem for the equation itself,
without recurring to a comparative family of linear equations.

In Section 1 we formulate our main theorem. Section 2 is devoted
to a discussion on the assumptions of this theorem and Section 3 contains
its proof. In the last section we indicate some generalizations.

1. Consider a differential equation
(1) &" = fit, &, 2')
and assume that the real function f(t, #, ) defined in the strip
D = (a, b) X R?
(R denotes the real line) satisfies the following condition:

(C) For every point (ty, 2, u,)eI) there exists one and only one
solution »(t) = (t;1,, z,, u,) of equation (1), defined on (a, b) and such
that z(t,) = xy, 2’ (1) = u,.

Moreover, consider a boundary value condition

(2) 2(ty) =1y, x(t) =1, (@<t <t <b).
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THEOREM 1. If the function f(t, x,u) is continuous in the strip D,
satisfies condition (C) and for every pair (t,,7r,), (t2,72) of points of the
set (@, b) X R (1, < 1,) there exists at most one solution of problem (1), (2),
then for each such pair there exists one and only one solution of this
problem.

2. Before proceeding to the proof of Theorem 1 let us observe that
it does not hold for the closed interval [a, b]. In order to prove this, denote
by ¢(p, q) the solution of the equation

(3) o+ sarctgp =¢  (p>—2).
It is easily seen that the family of all solutions of the differential
equation
(4) 2" = —ax+ yarctge(sint, wsint-+ x'cost)
is given by the formula
x(t) = Acost+ Bsint+ Larctg B,

where A and B are arbitrary constants. Thus, the boundary value
condition (2) for equation (4) leads to the following system of equa-
tions:

Acost;+ Bsint;+ 3arctgB =1r; (1 =1, 2).

After elimination of A we have
(D) Bsgin(t,—t,) + % (cost, — costy)arctg B = r,c087, — 7, C081,.
If ‘0 <t <ty<mor 0<t<t,<m, then obviously
gin(t,—t,) >0, costy—cost, > 0.

Hence it follows immediately that for every pair r,, 7, of real num-
bers the problem (4), (2) has a uniquely determined solution. However,
when we set ¢, = 0 and ¢, = 7, equation (5) reduces to

arctgB = r,+47,.

Asg before, this assures the uniqueness of solutions of problem (4),
(2) but at the same time it proves that they exist only if

|71 +47e] < w/2.

3. Passing now to the proof of Theorem 1, fix the points (¢,7,),
(ts, 7,) and, for an arbitrary ueR, denote by (¢, ) the solution of (1)
satisfying #(t;) = r, and 2'({,) = . From assumption (C) it follows
that the mapping T: R —> R defined by the formula 7'(u) = x(t,, u) 1s
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continuous. Similarly, from the uniqueness of solutions of problem
(1), (2) it immediately follows that 7' is an injection. Hence its range
T(R) is an open and connected subset of R,i. e. an open (finite or
infinite) interval. )

Thus, in order to prove that 7(R) = R, it remains only to show
that sup T'(R) = +ocoand inf 7'(R) = —oo. Suppose that p, = sup T(R)
<< oo and choose an increasing sequence {p,} = T(R) converging to Po-
By setting w, = T~ '(p,) and x,(t) = x(t, u,) we get

(6) Tn(ty) =711,  Xu(ty) = Pa.

From the uniqueness of solutions of problem (1), (2) it follows
that
(7) Tn(f) > (1) (H<t<b, n=23,...).

For infinitely many values of » we have either z;,(t,) < 0 or a, ({,) > 0.
We shall congider only the first of these cases, for the other presents no
further difficulties. Passing to an appropriate subsequence, if necessary,
we may assume without loss of generality that

(3) (1) < 0 (n=1,2,...).
Let ?; be a fixed point belonging to (f,, b). From (7) it easily follows

that
P (t3) — 2y (13) @ (13) “‘_jmn(tz)

= = K = miin (0,
ty— 1, bl

m1(':3)_1’0)
a— I
From this inequality and from (8) it follows that for every n = 1, 2, ...
the set
Bn = {t: 1, < T <y, ng,’@(t)g()}

is non-empty. Setting s, = minsS,, we have a,(t) < 0 for L, <t 8,
and therefore w,(s,) < @,(ty) < p,. On the other hand, by (7) we have

L = minw, (1) < 2,(8,) < 20 (8a),

[t2,13]
80 that

L < wy(80) <poy K< @n(8) <0, by < 8p < 1.

Replacing, if necessary, the sequence {s,} by an appropriate sub-
sequence, we may assume that there exist the limits

so =lims,, ®,=lmuax,(s,), wu,=1lima,(s,).
N—00 N—>00 N—00

From the continuous dependence of solutions of (1) on their initial
values it follows that the sequence {«,(?)} converges in (a, b) to a solution
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#,(t) of equation (1) such that x,(s,) = @, and #o(8) = u,. Moreover,
by (6) we have
xo(t) =711,  @o(ts) = Po-
This means that p, = T (#(t,)), 80 that p,eT (R). But this is impossible,
since T(R) is open, and therefore sup T'(R) = +oo.
The proof that inf 7(R) = —oo is quite similar and will be left to
the reader. : :

4. Theorem 1 remains true if we replace the boundary value condi-
tion (2) by a more general condition

(9) am(ty)+pa'(t) =7y, @) =1, (a<t #i1,< b; a®4-p2>0).

We have then the following

THEOREM 2. If the function f(t, ©, u) is continuous in the strip D, satis-
fies condition (C) and for every pair of points (l,1,) and (ty,7s) of
(a, b) X R (t, # t,) there ewists at most ome solution of problem (1), (9),
then for every such pair of points there ewists one and only one solution of
this problem.

The proof of this theorem is quite analogous to that of Theorem 1,
the only difference lies in the definition of (¢, ) which denotes now
the solution of equation (1) satisfying the initial conditions

Blt) =y () = - (ry— o).

p

It is worth while to notice that Theorem 2 does not hold if we replace
condition (9) by a slightly more general condition

0@ (t)+ Bet’ () =1¢ (b # tyy i+ i >0, i =1, 2).
In order to prove this, consider the differential equation
(10) a' = dp(2et, a'e7"),

where ¢ denotes the function defined by (3), and the boundary value
condition

(11) o' () —w(t) =71, @ (G)—x(t) =1y (& #1).
Since the family of solutions of (10) is given by the formula
@(t) = A+ B+ tarctg B,

in which A and B are arbitrary constants, conditions (11) lead to the
system of equations

(1—t)arctgB—A =r; (1 =1,2).
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The elimination of A yields
(t,—ty)arctg B = ro—r,.

Thus problem (10), (11) has at most one solution, but for
'
[ro—1y| = ) |t — 14|

the solution does not exist.
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