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ON TWO THEOREMS OF DYER

BY

J. KRASINKIEWICZ (WARSZAWA)

In [1] and [2] E. Dyer proved several interesting results on continuous
decompositions of continua into decomposable elements. In this paper we
discuss some of those results again. We are doing this because of their
importance for continua theory and because we have found either
simpler proofs or some generalizations of them. The author believes that the
generalizations of Dyer’s results from [2] which we obtain in Section 3
completely characterize the quotient spaces of continuous decompositions of
planar continua into decomposable continua (comp. Problem 1 in Section 4).

1. Terminology and auxiliary results. In this section we establish our
notation, prove some simple results and recall some known results for
purpose of future references.

All spaces under considerations are assumed to be metrizable and, in
fact, we usually assume that the spaces are equipped with fixed metrics.
A compact connected nonvoid space is called a continuum. A contmuum is
said to be:

(i) completely regular if each nondegenerate subcontinuum has nonvoid
interior;

(i) regular if the continuum has a base of open sets with finite
boundaries;

(ii1) finitely suslinian if each sequence of pairwise disjoint subcontinua
forms a null sequence, i.e. the diameters of the subcontinua converge to zero;

(iv) hereditarily locally connected if each subcontinuum is locally
connected;

(v) suslinian if each collection of nondegenerate pairwise disjoint
subcontinua is countable; ‘

(vi) hereditarily decomposable if each nondegenerate subcontinuum is
decomposable.

ProrosiTiON 1.1. The following implications hold true:
1) = (i) = (i) = (iv) = (v) = (vi)

and none of them can be reversed.
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The first implication is proved in [4], Theorem 3, p. 284; the others
are easily verifiable. For more details and appropriate counterexamples we
refer the reader to [4] and [5].

Since completely regular continua play an important role in this note we
shall give another, more geometrical, characterization of this class. To this
end we need some more terminology.

If A is an arc, then A denotes its boundary, and A = A\ A. Let A4,, A,,
A, be three disjoint arcs and let B be a three-point set obtained by selecting
one point from each of the sets 4,, A, and A;. The space obtained from
A; U A, U A, by identifying B to a point [B] is called a simple triod with
centre at [B]. Recall that by a triod we mean a continuum X which contains
a subcontinuum C such that X'\ C is a union of three nonvoid separated sets.
An arc A = M is said to be free (in M) if A is an open subset of M. By a
domain we mean an open connected set.

LemMA 1.2. Let X be a nondegenerate regular continuum and let G be a
nonvoid domain in X such that ord, X = 2 for each xe G. Then G is either a
simple closed curve or an arc.

The proof can be easily supplied using the Whyburn theory of cyclic
elements [5].

The next result gives the promised characterization of complete
regularity.

THEOREM 1.3. A continuum X is completely regular if and only if there
exist a 0-dimensional compact subset F of X and a finite or countable null
sequence of free arcs A,, A,, ... in X such that

X=FuU{d4,, n=21} and A;nF =4

for each j > 1.
Remark. Observe that A, A4; =@ for i #j.
Proof. The sufficiency is trivial. Now, assume X is completely regular

and consider the set E, = {xe X: ord, X > 3}. Suppose there is an arc
L c E, and consider an arbitrary point ye L. Then y = lim x,, where ord, X
> 3 for each n> 1. Since X is locally connected, by the “n-Bein-Satz” of
Menger there is a simple triod 7T, with centre at x, for each n > 1. We may
assume that diam T, < 1/n. Since T, £ L, it follows that ye X\L. This
implies that Int L = (3, a contradiction.

By Proposition 1.1 it follows that E, contains no nondegenerate
subcontinuum ‘and therefore dimE, <0. The set E, = {xeX: ord, X
= 1} \E, is discrete and therefore countable. Moreover E, \E; < E,. Hence
Eo U E, is compact of dimension < 0. If this set is void, then X is a point or
a simple closed curve, and there is nothing to be proved. Hence we may
assume that it is nonvoid. Then let G,, G,, ... denote all components of
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X\(Eo UE,). From Proposition 1.1 and Lemma 1.2 it follows that G, is
either an arc or a simple closed curve. Moreover G,, G,, ... form a null
sequence by Proposition 1.1. Let E, be a set obtained by selecting one point
from each G, for which G, is a simple closed curve. Then the set F
= EoUE; UE, is compact and O-dimensional. The reader can easily check
that the closures of the components of the set X\F form a countable
collection of arcs which together with F satisfy the requirements of the
theorem. This completes the proof.

If M is compact, then by 2¥ we denote the hyperspace of all closed
subsets of M with the Vietoris topology. Hence the empty set is an isolated
point of 2M.

ProposITION 14. Let g: M — N be a mapping between compact spaces.
Then

{yeN: g~': N->2M is continuous at y}

is a dense Gs-subset of N (see [4], p. 71).

All subcontinua of M form a subspace of 2™ denoted by C(M). It is
known that the topology of C(M) inherited from 2™ coincides with the
metric topology induced by the Hausdorfl metric dist(-,-). A sequence C,,
C,, ... of subcontinua of M is said to converge to a continuum C,; notation:
IC,} = Co, if Cq, C,, ... treated as points of C(M) converge in the sense of
Hausdorff metric. It is well known that if M is a continuum which is not
hereditarily locally connected then there exists a convergence continuum C,
in M, that is: C, is nondegenerate and there exists a sequence of pairwise
disjoint continua C,, C,, ... disjoint from C, such that {C,} - C,.

ProposiTiOoN 1.5. If X is a continuum which is not hereditarily locally
connected then there exist a connected set W< X and a nondegenerate
continuum C < X such that C c W\ W.

Proof. Let Ay, A,, ... be a sequence of nondegenerate pairwise disjoint
continua such that {4,} — A,. Let C' and C” be two nondegenerate disjoint
subcontinua of A,. Applying [4], Theorem 7, p. 141, to the family
S={C,C" A,, A;,...} we infer that there is a connected set Wc X
containing infinitely many elements of S such that either C'"W=Q or
C'nW=@Q, say CnW=@. Then C=C satisfies the conclusion of
Proposition 1.5, which completes the argument.

By I we denote the unit interval [0, 1].

LEMMA 1.6. Let N be a compact space and let ¢: N — I be a surjection
such that ¢~ (t) is a boundary subset of N for each tel. If P is a countable
subset of I, then ¢~ '(I\ P) is a dense Gsubset of N.

This follows' from the Baire theorem.
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One easily shows the following

ProposITION 1.7. If there exists a monotone mapping from a compact
space M onto a continuum, then M is a continuum.

2. Dyer’s theorem on monotone selectors. The aim of this section is to
give a simple proof of an interesting result essentially established in a paper
of Dyer [1] which however was not explicitly stated there. In this form this
result appeared in [3] for the first time. All results from [3] heavily depend
on this theorem. .

THeoOReM 2.1 (E. Dyer). Let X and 'Y be nondegenerate continua and let
f: X — Y be a monotone open surjection. Then there exists a dense Gs-subset A
of Y having the following property: for each ye A, for each continuum
B < f~(y), for each xelntf_lmB and for each neighborhood U of B in X,
there exist a continuum Z — X containing B and a neighborhood V of y in Y
such that xelIntZ, (f1Z)"*(V) < U and f|Z: Z — Y is a monotone surjection.

Proof. Let K(x, ¢) denote the ¢-ball about x in X. For each natural
n=1 let

M, = (B, x)eC(X)x X: K(x, I/mnf~'f(x) = B<f~'f(0)}.

Since f is open, M, is compact. The map f,: M, — Y given by £, ((B, x)) =f(x)
is continuous, hence the set

(1) A, ={yeY f,71: Yo 2" is continuous at y)

is a dense G4subset of Y by Proposition 1.4. Then
A=N{4, n=>1}

is a dense G,-subset of Y. We shall show that 4 has the desired property. To
this end fix a point yoe 4. Let B, =f~!(y,) be a continuum, let x, be a
point of Int £ 100 By and let U, be a neighborhood of B, in X. There is an
index n>1 such that K(xo, 1/m)nf~1(yo) = Bo. Since f(xo) = yo,
(Bo, xo)€ M,. Thus

() (Bo, xo)efy ' (¥o)-
Let F be a compact neighborhood of B, in X contained in U, and let
(Fy={DeC(X): D < F}.

Let ¢ <1/2n be a positive real number. The set
G =M, N [{F) xK(xo, ¢)]
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is a neighborhood of (By, xo) in M,. Since y,e A,, there is an open
neighborhood V of y, in Y such that

3) yeV=f1()nG#@ (see (1) and (2)).

Consider a point ye V. By (3) there is (B, x)e G such that f,((B, x)) = y.
It follows that K(x, 1/m)nf~'(y)=cBcf~!(y), BcF and xeK(x,, €).
Then

xeK(xo, &) Nf () = K(x, I/n)nfT () = B=Fnf~(y).

Hence for each ye Vthe set K(x,, &) N f ~!(y) is nonvoid and it is a subset of
a single component of F nf~!(y); let this component be denoted by C,. One
easily sees that the set

Z=f"1(Y\V)uU{C,: yeV}

is compact; by Proposition 1.7 it is a continuum. This continuum and the set
V satisfy the conclusion of the theorem, where U, B and x are replaced by
Uo, Bo and x,, respectively.

COROLLARY 2.2. Let X and Y be nondegenerate continua and let f: X - Y
be a monotone open surjection with decomposable fibres. Then X contains a
triod.

Proof. From Theorem 2.1 we infer that there exist three different points
Yos Y1, ¥2€ Y and a continuum C in X such that the map f|C: C— Yis a
monotone surjection and f~'(y)\C # @. Then CUU{f ' (y): j=0, 1,2}
is the desired triod. This completes the proof.

By the Moore triodic theorem we obtain the following corollary to 2.2,
which will be used as a step in a proof of a stronger theorem. S2 is the
2-sphere.

LemMa 2.3. Let X be a continuum in S? and let f and Y be as in 2.2. Then
Y is suslinian.

3. Continuous decompositions of planar continua. Throughout this section
X stands for a continuum in S2 and f: X — Yis an open monotone mapping
with decomposable fibres onto a nondegenerate continuum Y.

Using his theorem on monotone selectors E. Dyer proved in [2] that
under the above assumptions Y must be hereditarily locally connected. In
this section we give a shorter and conceptually simpler proof of this result.
We obtain also some extra information on Y which, in the author’s feeling,
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characterizes such continua Y. We shall derive all these facts from the
following theorem. In spite of the fact that this theorem is not proved in [2],
its proof involves several ideas used in that paper.

Notation. If N is a subcontinuum of Y and H is a subset of
S\ f~1(N), then we denote

N(H)={yeN: f~!(y) is a limit of a sequence of continua from H}.

Obviously, N(H) is a closed subset of N.

TueoreM 3.1. If G is a component of S*\ X, then dimY (G) < 0.

Proof. Suppose dim Y(G) > 0. Then there exists a nondegenerate
continuum Y’ < Y(G) because Y(G) is compact. Let G’ denote the
component of S\ f~!(Y’) which contains G. There exist two points x,,
x,€f " 1(Y’) accessible from G’ such that f(xo) = vo # y; =f(x,). Let Nc Y’
be a continuum irreducible between y, and y,. Let M =f~!(N) and let H
denote the component of S>\ M containing G'. There is an arc L from x, to
x, such that L« H. Then H\Lis the union of two domains H, and H,.
Since N(H) « N(Ho)u N(Hy) L {yo, y;} and by the construction N(H) = N,
then for some i =0, 1, the set N(H;) has nonvoid interior with respect to N,
say IntyN(H,) # @. It follows from Lemma 2.3 that N is hereditarily
decomposable; hence there is a continuous surjection ¢: N — I such that
@~ '(¢t) is a boundary subcontinuum of N for each tel (see [4], p. 216).
Again by Lemma 2.3 there is a countable subset P of I containing 0 and 1
such that ¢~ !(¢) is a one-point set for each teI\P. It follows from Lemma
1.6 that ¢ !(I\P) is a dense G;-subset of N. Applying the theorem on
monotone selectors to the map f| M: M —» N we obtain a dense G4-subset A
of N satisfying the conclusion of Theorem 2.1, where X, Y, f are replaced
respectively by M, N and f|M. All these considerations lead to the
conclusion that there is a point

JelntyN(Ho)no~ '(I\P)n A.

Then y has the following properties: (i) y separates N between y, and y,,
(i) f 1 (5) = Fr H,, (iii) € A. Now proceeding as in the proof of Theorem 2
in [2], p. 358, we get a contradiction. That technique of Dyer can also be
adjusted to yield a construction of a skew curve of Kuratowski in S2. This is
another possibility of getting a contradiction. Thus the proof is completed.

Lemma 3.2 (E. Dyer [2], Theorem 3). Y is hereditarily locally connected.

Proof. Suppose the theorem fails. By Proposition 1.5 there are a
connected set W< Y and a nondegenerate continuum C < W\W. Let V be
the component of S$?\ f~!(C) containing the connected set f~!(W). Then
C = C(V), contrary to Theorem 3.1.

Lemma 3.3. Suppose f~'(Y\{y}) is contained in a single component of
S2\f~1(y) for each yeY. Then Y is completely regular and embeds in S>.

Proof. Let D be an upper semi-continuous decomposition of S? in
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continua f ~!(y) and the individual points of S\ X. Let q: S? - S%/D be the
projection. Then we may treat Y as the set g(X) and f as the map determined
by g. The space S%/D is a Janiszewski space (see [4], Theorem, p. 506, and
Theorem 9, p. 507). Our assumption about Y is equivalent to the fact that Y
is a subset of a nondegenerate cyclic element E of S%/D. It is known that E is
topologically the sphere S2 (see [4], Corollary 7, p. 533). According to
Lemma 3.2 the lemma will be proved once we show that every arc in Y has
nonvoid interior. Suppose, to the contrary, that there is an arc Lin Y with

void interior. Then L < Y\L. Also Y\L < E\Land E\L is connected. There
is a component G of S?\ g~ (L) containing ¢~ ' (E\ L). Hence f "}(Y\L)= G
and from L< Y\L we conclude that L = L(G), contrary to Theorem 3.1.

If E is a cyclic element of a locally connected continuum, then no point
of E separates E (see [4], Theorem 6, p. 313). Thus the above lemma applies
to each cyclic element of Y. Hence we obtain the following

THEOREM 34. Each cyclic element of Y is completely regular and embeds
in S2.

CoroLLARY 3.5. Y is regular(?).

Proof. By Theorem 3.4 and Proposition 1.1 each cyclic element of Y is
regular. Since the property “of being regular” is extensible (see [4], Theorem
2, p. 325), Y is regular. This completes the proof.

4. An example and problems. Let G;, G,, ... be the components of
$2\ X. It follows from Theorem 3.1 that () {Y(G,): n > 1} does not contain a
nondegenerate continuum because it is (an F,-set) of dimension < 0. One
might wonder if the same is true for the set Y(S%\X). Now we give an
example violating this conjecture. Let N be a dendrite containing an arc Y
with void interior in N (see, for instance, [4], p. 247, for such an example).
According to a result in [2] there are a continuum M < S? and an open
monotone surjection with decomposable fibres f: M — N (in fact M may be
assumed to be the whole sphere S?). Let X =f~!(Y). Then Y(S?\X) = Yis
a nondegenerate continuum.

The author believes that the answer to the following problem is
affirmative.

ProBLEM 1. (P 1288) Let Y be a continuum as in Theorem 3.4. Do there
exist a continuum X < S? and an open monotone surjection f: X — Y?
Because of Theorem 3.4 the next problem is of an interest.

ProBLEM 2.(%) Does there exist a universal continuum for the class of
(planar) completely regular continua?

(%) Perhaps this fact follows from the results in [2] but it is not proved there.

(® S. D. Iliadis in his paper “Universal continuum for the class of completely regular
continua” (preprint) has shown that there exists a universal planar completely regular
continuum.
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