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In [2] Liulevicius proved in a “ridiculously simple” way that the graded
abelian group R = @R, such that R,, is a complex representation ring R(S,)
of a symmetric group S, (with respect to + and tensor multiplication x) and
R,,+1 =0, with a product ¢: R®R— R induced by an operation of
inducing a representation from S,x S, to §,., and with a coproduct y: R
— R®R induced by an operation of restriction of a representation from S, ,
to S, xS,, is isomorphic to a Hopf algebra C = Z[y,, y,, ...] with natural
product of a polynomial ring on indeterminates y,, y,,... (yo =1) and a

coproduct given by Y (y) = Y y,®y,, gradey, = 2n. The indeterminate y,
) ptq=n
corresponds to a trivial, one -dimensional representation of §,.

The purpose of the present paper is to give interpretations of some
known facts concerning complex representations of general complex linear
groups G,=GL(n,C) in terms of Hopf algebra structure on C.

Unfortunately, a corresponding evenly graded abelian group R(G)
aD
= @ R(G,) with natural coproduct and with slightly less natural product is

n=0
not a Hopf algebra, but its structure is completely determined by that of
Hopf algebra C.

We use only those results on representations of symmetric groups which
are proved in [2] and supplement them in Section 1 by two known results,
proving them in style of [2]. In Section 2 we study a graded group R(G) of
complex representations of full general complex linear groups G,; in Section
3 we determine the structure of coproduct. In Section 4 we define product
and determine its structure. Analytic and antianalytic representations of G,
are considered in Section 5.

We preserve notation of [2]. All representations under consideration are
complex, finite dimensional, continuous.

A Hopf algebra approach to the study of representations of general
linear groups over finite fields is developed in [4].
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1. Complementary results on representations of symmetric groups. The
isomorphism A4: C— R =@®R(S,) mentioned above maps y, onto
a class of trivial one -dimensional representations of S,. Schur inner product
on R(S,) is denoted by (,) and is induced by a map which with a pair of
representations U, V of S, associates dimg Homg (U, V). It extends naturally
to a pairing R(S,)®R(S,)®R(S,)®R(S,) — Z and Frobenius reciprocity gives
(p(a,®b,), a,.,) =(a,®b,, ¥ (a,+,)) for a,eR(S,), b,e R(S,), ap:+a€R(S,p+,).
If a, beC we write (a, b) for (Aa, Ab).

For each exponent sequence E = (e, e,, ..., ), where e, ..., e, are
nonnegative integers we have a monomial yf = yi!...y:° of degree e, + 2e,
+ ... +se,. Let us remind that d, denotes an element of C corresponding to
a one-dimensional representation of S, which sends o€ S, onto sgn(o).

Lemma 1. Y (=1)Pd,y, =0.

p+q=n
Proof. We wuse formulas: (d,, y}) =(y,, ¥§) =1, (d,, ") ='0 for
F#(p,0,...,0) and (y,, y') =1 for all monomials y* of degree p.
To compute (d, y,, y¥) = (d,®y,, ¥ (%)) for any monomial y* of degree
p+gq let us remark that by the above formulas we can omit all terms in
¥ (yF) which are not of the form yX ®y". The sum of remaining terms is

1 ®1+1®y)" (1; @y +1®y,) 2 ... (¥, By 1 + 1Ry

-3 .Y (o) ( Jor @0 @y ™ i@y 1@y

k=0 k=0 ki

y ki

Consequently

d, ¥, ¥5) = ZZ(:)(Z)
e
for all k;+...+k,=p and the equality ) (—l)k"(:’)=0 implies the
k:=0 J
formula.

CoROLLARY 2. d, = det(}’j—iﬂ)i.j:l ..... n= W0y ..., .Vn—l)+(_1)n+lyn
where yo =1, y, =0 for k <0 and W, is a polynomial.

In fact, elements d, and the determinant above satisfy the same
recurrence formula of Lemma 1.

CoRroLLARY 3. y,=det(d;—;+1)ij=1,..n

Apply the automorphism D (see [2]), which interchanges d, and y,, to
the above formula.

CoRrOLLARY 4. Elements d,, d,, ... are algebraically independent in C and
Z[d,,...,d,]=2Z[yy, ..., ya] for all n.
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An exponent sequence E = (e, ..., e;) determines a partition n(E) = {4,
2A=2...24),r=e+...+e,0f n=e,+2e,+ ... +se,, in which i occurs
precisely e; times. A conjugate partition n(E')=n'(E)= (A1 =21, > ... > i}
consists of A} =e;+ ... +e, A =e;+ ... +e,, ..., 4, = ¢,. There is known

.a relation of partial ordering < between partitions of n: {4, 4,, ...}

Qi g, o) T A+ .+ A< +...+p for k=1,2,... (see [1]). It is
easy to see that n(E) < n(F) implies E < F (ie. for F =(fy, ..., f) the first
nonzero entry from the right in (e, —f;, e;—f3, ...) is positive).

Using methods of [2] we improve Lemma 14 of [2] to

LemMMAa 5. If <cE,yF)#0 then n(E)<n(F) where cf=ci'...c*
= C;, ---Ca, and c; is such an element of grade 2i in graded dual C, of C that c;
vanishes on all monomials different from y, and {c;, y\) = 1.

Proof. We have (cf, )" )=4c;®...®c;,¥"()")), where y": C
-+ C®...®C (r times) is induced by y: C— C®C. The only term of the
form y;'l‘®... ®y;’ on which €1, ®...®c, does not vanish is ViI®...®p.

For each function &: {1,2 ...,r}— {0,1] let us denote y(e)

=)yV®...®y"eC®...QC where =1, yl=y,. Let A, k
=1,2,...,r, be the set of all such functions ¢ that |¢~!(1)] = k. Since

v oF) =W o))t (0

and ¥ (y,) = th@ ... @Yy, , where ky + ... +k, =k, then the terms in y"(y,)

which contain only y;, and y{ sum up to ) y(e). Consequently the sum of
E€Ay
such terms in Y"(yF) equals

(X vV (E ye) =Ty ...y Y- .. yiey)

g1edy geA,
where the sum extends over all ¢y, ..., &, €4y, ..., &1, ..., &y, €A,. Each

choice of ¢’s determines such an arrangement of natural numbers (repetitions
admitted) in a Young diagram of shape F (i.e. with f; rows of length k) that
a set ¢;'(1) is put in j-th row of length i in an increasing order. In this
arrangement a number [/ may occur in first [ columns only. It is clear that
y(e1y)...¥(Es) = ¥1'®... @y where a, is the number of entries of k in
a diagram; then

a,+ ... +a,(number of entries of 1,2, ..., k)< ui+ ... +u

because uj, u5, ... are lengths of columns of F.
The inequality {cf, yF)> # 0 implies that y?‘@ ... ® yf' occurs as some
VI®... @y then A+ ...+ A S M+ ...+, k=1,2, ..., ie n(E) < n(F).
In the same way as in [2] we conclude from Lemma 5 the well-known

CoROLLARY 6. For each partition E of n, elements bg corresponding in C
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to irreducible representations [n(E)] of a symmetric group S, satisfy

bg = yE— Z (Hbg, y>br  where n(E) < n(F).
2. Complex polynomial representations of GL(n, C). It is known that
any ‘polynomial representation of the group G, = GL(n, €) is isomorphic to
Lg(C") = Homg, ([n(E)], (CY®°)

where E =(e,, ..., e) is a partition of e =e; +2e,+ ... +se,, [n(E)] is an
irreducible representation of S, corresponding to E and e; + ... +e, < n. The
group S, operates on (C")®¢ by permuting components and G, operates
naturally on C". e (= degree of representation) and E are unique.

For eachn=1, 2, ... let R(G,) be a ring (with respect to + and tensor
multiplication x) of polynomial representations of G,. Let v,: C — R(G,) be
such an epimorphism of abelian groups that v,(bg) = Lg(C". Thus for any
finite dimensional representation ¥V of S, we have v,(47'(V))
= Homse(Va (C")ge)-

ProrosiTioN 7. Let a, beC; then v,(ab) = v,(a) xv,(b).

Proof. It is sufficient to prove the formula for monomials a = )£

=y Y =Yy, b= =yl Weput f=fi+..+tf, m=e+
+f and let S = S, x ... x§; be the Young subgroup of S,. The product in

C is determined by an operation of inducing representation, thus Ayt is a
representation of S, induced from a trivial representation of Sg, ie. AyE
= C[S,]1®s, C, and

va(y¥) = Homg (C[S,]1®s, C, (C)%) = Homg, (C, (C)®) = {(C)®*}°E.
Consequently

Va(VE V) = va (A7 (IndsPs, (A x AY)
= Homg_(Inds™.s, (4y* x 4y"), (C)®")
= Homs, .5, (A x A", (C")®")
= Hom, s, ((C[S.]1®s, O) x(C[S,1®s, ), (C®™)
="Homg s (CLS. xS;1®sp xs; C, (C)®™)
= Homg, .5, (C, (C"®")
— {(cr)e(e+n}sE *xSF
= {(CV®) @Y/} F
= v, (") X, ().

COROLLARY 8. The kernel of v, is an ideal of C generated (additively) by
all such bg that e;+ ... +e,> n.
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PROPOSITION 9. The kernel of v, is an ideal of C generated by d,., ,,
dys 2, ... The ring R(G,) is isomorphic to a polynomial ring over Z generated
by algebraically independent elements v,(d) = \YC") for k=1,2,...,n

Proof. A representation Ad, is identical with [=n(k, 0, 0, ...)], then
d,eKer v, for k > n. Conversely, let us assume that bzeKer v,, then e, + ...
+e, > n. By the definition of bg in [2] it follows that D (bg) = bg. Since bg. is
a linear form in yf for F > E’, b; is a linear form in df for F > E'. Let F
=(f1,--»f), fi>0; then F>E implies t>e;+...+e,>n, so d¥ is
divisible by d,.

By Corollary 8 we can identify R(G,), as an abelian group, with an
additive group of a cyclic C-module Cy,, where annihilator of y, is Ker v,
=(dp+y,dns 2, .-). A generator y, corresponds to a one-dimensional trivial
representation of G,. By Proposition 7 we have (ab)y, = ay, xby,.

3. Restriction of representations and coproduct. Let p, g, n be non-
negative integers and p+q = n. The group G, xG, is naturally embedded in
G, and any representation of G, restricted to G,x G, may be uniquely
decomposed into a direct sum of tensor product of irreducible
representations of G, and G,. In this way we get maps R(G,
- R(G,)®;R(G,) and a coproduct

¥s: R(G)~ R(G)®zR(G)

where R(G) = @ R(G) = @ C7., Gy is a trivial group and R(G,) has grade
=0

2n. We identify ay,®by, w1th (a®b)y,®7, and view it as a representation of
the group G,xG,.

THEOREM 10. For any aeC we have

Velay) =v¥(@ Y 7,®7, n=12,..

ptq=n
Proof. It is sufficient to prove the formula for monomials yf
=yi'...y. We proceed by induction on e, + ... +e,.

Let k > 1; then v,(y,) is k-th component S, (C") of a symmetric algebra
on C" with natural operation of G,. Hence

'I’G(yk Yn) = Z RCSG xG Sk(Cn)
= Z Rest,(Gq S (CPe (Y
Y 2 Si(CH®S;(C)

ptq=nitj=k

=Y 257,87
=y Y 7,97,

ptg=n
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Assume that the formula holds for y£ and let k > 1. The coproduct ¢: C
— C®C is a ring homomorphism then using Proposition 7 we get

Ve (V5 ¥ va) = V6 (VF Y X i 74
= z Re"’t;,,xc;,,(}"E Yn X Yk ¥n)

ptq=n

= Y Resg, xg, (¥ 7 X Resg <6, (Vi 7a)
=Y W () 7,87) x (¥ ) (7,87,))
=Y VAV 1,01 =¥ 0w Y 7,07,

ptq=n
and the theorem follows.
CoRrOLLARY 11. We have Ys(y) = Y 7,®y, and then for aeC

ptq=n

Ve (ay) = ¥ (@ Ve (7n)-

CoROLLARY 12. The coproduct Y;: R(G)— R(G)®R(G) determines on
R(G) a structure of coassociative, cocommutative graded coalgebra. It is
completely determined by C.

4. Product of representations. Let p, g, n be nonnegative integers and
p+q = n. Groups G,x G, are not of finite index in G, unless p =0 or g = 0.
Thus the usual algebraic construction of induced representation does not
preserve finiteness of dimension. We avoid this difficulty using Frobenius
reciprocity

Ind§ (M) = @ (M, Res§ (M) N

where K < G are finite groups, N runs over simple G-modules, M is a finitely
generated K -module, and (,) is Schur inner product.
We define a product ¢;: R(G)®R(G)— R(G) by the formula

@6 (bg 17 ®bg ?q) = ; (bE Ve ®bg Vo> Ve (by Yp+q) by )’p+q)-

The sum is finite; in fact, for non-zero bgy,eR(G,), bry,€ R(G,) the
coefficient at byy,., is equal to (bg®bf, ¥ (by)) = (¢ (bg®bf), by), so
vanishes for almost all H.
Tueorem 13. For each aeZ[y,, ..., y,} = C, beZ[y,, ..., y, ] = C we
have .
@6 (ay,®by,) = ¢ (a®b) 7,4,

Proof. If a4 b are homogeneous in C then ¢(a®b)
=Y (¢(a®b), by)by where deg by = deg a+deg b and the formula follows

H
by additivity.
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Remark that the formula in Theorem 13 is not valid for arbitrary a, b.
For instance d,,,7, =0; then ¢g(d,,,7,®d,7,) =0 but @(d,,,®d,)7,+,
=dpi1dg7p4q # 0.

CoROLLARY 14. The product ¢g: R(G)®R(G)— R(G) determines on
R(G) a structure of associative, commutative graded algebra. It is completely
determined by C.

Unfortunately, product and coproduct structures on R(G) are not so
closely related as to determine on R(G) a Hopf algebra structure. In fact, an

easy computation shows that maps Y ; ¢g, (96 @) (1T ®1) Y ;@Y send
an element y,®y,, corresponding to a trivial representation of G, xG,, onto

Y 7%®y and Y Y y.®¥+a= Y my®y respectively,

r+t=p+gq i+j=p k+l=¢q r+t=p+gq

where m, is a number of quadruples (i, j, k, }) of nonnegative integers such
that i+k=r, j+l=t, i+j=p, k+1=gq, ie. a number of double cosets
S, X8, \Sp+4/Sp xS,.

S. Anmalytic and antianalytic representations. A classification of all
(complex) continuous, not necessarily polynomial, irreducible representations
of groups G, is well known (see [3], [5]). Any such representation is
isomorphic to a tensor product '

Ty, ..., QT(sy, ..., 5)R4(0)

(rys---s Tw—1, S35 ---, Sy—y Aare nonnegative integers, r,, s, are arbitrary
integers, { is a complex number) of an analytic representation T(ry, ..., r,),
of an antianalytic representation T(s;,...,s,) and a one-dimensional
representation 4({) which sends geG, onto |det(g)|* = exp({ log|det (g)I?).
Parameters r,, ..., s,, { and ry, ..., s,, {’ correspond to isomorphic tensor
products iff r, =171, s;=s;,i=1,...,n—1, and r,—r, =s,—s, ={—(.

An analytic representation T(r,,...,r,) is isomorphic to a tensor
product of T(ry,...,7,-1,0) and a one-dimensional representation
g+ (det g)™. If r, > O then we easily identify T(r,, ..., r,) as a representation
byy. where H corresponds to a partition {r;+...+r,, ..., r,}. Similarly,
a representation T(s;,..., s, is isomorphic to a tensor product of
T(sy, ..., S,—1, 0) and a one-dimensional representation g —(det g)™; if s, > 0
then we easily identify T(s,, ..., s,) as a complex conjugate of bpy, for F
corresponding to a partition {s;+ ... +S5,, ..., Su}.

To describe the ring of classes of continuous representations of general
linear groups let us denote for each natural number n by D, the group ring
Z [{d,};c] of the additive group of C, ie. & d =d*%; clearly D, =D, = ...
Moreover we introduce new generators 7, (n =1, 2, ...) of cyclic C - modules
Cy, such that Ann 7, = Ann y, and we identify the ring of isomorphism
classes of antianalytic representations of G, with C7,.
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TueoreM 15. The ring R(G,) of equivalence classes of all continuous
representations of a group G, (with respect to + and x) is isomorphic to a
factor ring of the ring Cy,®;C7,8zD, by the ideal generated by the element
dn yn®dn :}’-n®l - yn®7n®d: .

- o]
A coproduct structure on R(G) = @ R(G,) induced by restriction is

n=0
determined by maps ,.: R(G,) - R(G,)®R(G,) for n=p+q which satisfy
the conditions
(i) ¥, is a ring homomorphism;

(11) Jm extends restrictions Cy,— Cy,®Cy, and the corresponding
restrictions Cy,— C7,®C7,;

The proof is just a verification.

There is no natural extension of product structure on R(G) to such a
structure on R(G). In fact, for ay,€ Cy,, by,eCy, as in Theorem 13 we have
¢g(d,ay,®by,) = (d,ab)y,.+,. Multiplication by d, is an invertible map in
R(G,) but d,-divisible part of R(G,) is zero for n> p.
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