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In this paper we consider a partial differential equation

Q) (@, 9) =F(@, 9, uly:(2,9), 8:(2,9)), 4 (:(2, 9), 8:(2, 9)),

uu(ya(w’ Y), 0s(x, y))a u:w(a(w7 ¥), B(x, '.'/)))
with the boundary conditions

u(x,0) =o(x) for 0

<r<a,
%(0,y) =7(y) for 0y

2 sa
(2) <b,

where o: [0, a] —>R' and v: [0, b] —>R' are functions of class C' satisfying
a(0) = 7(0).

‘We shall be interested only in solutions # which are continuous in the
rectangle 4 = [0, a] X [0, b] together with its partial derivatives u,, u,, Uy, .
The set of all such functions will be denoted by C*(A4). The problem con-
sisting in finding a solution of equation (1) fulfilling conditions (2) will
be called the Darboux problem.

The Darboux problem for equation (1) with y;(z, y) = x, é;(x,y) = ¥,
where ¢ = 1,2, 3, and F not depending on the last variable, was con-
sidered by many authors under various conditions; for a more detailed
information and bibliography see [2], [4] and [6].

In this paper we shall prove the existence and uniqueness of solutions
of the Darboux problem by the method of successive approximations.
‘We shall also give estimations of the error and a theorem stating continuous
‘dependence of solutions on the right-hand side of equation (1). Our results
are generalizations of those in [5].

More precisely, we shall deal with the following case:

O<m@,9)<z 0< d(2,y)<Y, 0< a(z,y)< ko, 0< B(2,y) < ly,
k,1e[0,1], 4 =1,2, 3.
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Essential in this case is that theorems established here involve some
relations between the Lipschitz coefficient of the function F with respect
to the last variable and the functions a and g. All our results are obtained
by using the general idea of Wazewski [7] (see also [1] and [3]).

If a function uwe C*(A4) is a solution of the Darboux problem (1)-(2),
then, for the function 2z continuous on 4 and defined by the formula
2(@,y) = gy (@, y), We have

z Yy
(3) u(z,y) = o(x)+7(y)—o( —I—ffzu v)dudv,
00
Yy
U (2, y) = +fza; v)dv,
0

uy (o, ) = 7 (0)+ [ 2, 9)dn.
0
Consequently, the function 2z fulfils the equation

(4)  2(2,y) = Fle,y, o(y:(3,9) +7(5: (e, y)) —0(0) +
71(x,¥) 6,(x,v) 9a(z,v)
+ [ [ au,v)dudv, & (ya(@, 9))+ [ 2(ra(®, 9), v)dv,
0

0 0
73(,v)

v (8a(z, 9)+ [ 2(u, bi(2, 9))du, 2(a(x,9),B(=, 9)))-

0

Conversely, if a function 2, continuous on 4, fulfils (4), then the
function ue C*(4) defined by (3) is a solution of the Darboux problem
(1)-(2). Thus the Darboux problem (1)-(2) is equivalent to the problem
of solving the integral equation (4).

Putting in equation (4)

f(w’?/’z7prq7r)=F( 7?/70'(71 7?/))+T(61 ’?/)—0' )+2,
(72(977?/))+p1 (63(w’y))+Q77)7

we get an integral equation of the form

r1(z,¥) 81(z,) 3y(z,v)
) #@,y)=flz,y, [ [ 2(u,0)dudv, [ z(ys(z,9), v)dv,
0 0 0
73(,v)

[ #(u, 6(@, 9))du, 2(a(@, 9), B(@, ),

0

with which we shall deal.
Remark 1. If y,(0,0) = §,(0,0) = a(0,0) = (0,0) =0 for ¢ =
=1, 2,3, then we assume in the sequel that also f(0,0,...,0) =0 and
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2(0, 0) = 0. The general case can be reduced to that one by the substi-
tution z(x,y)—Axy = 2*(r,y), where A is a solution of the equation
z = f(0,0,0,0,0,2),

(it is supposed that there exists a solution of this equation).

1. Assumptions and lemmas.

Assumption H,. Suppose that _

1° f: 4 x R*—>R! is continuous (4 = [0, a] x [0, b]);

2° functions y;, a: 4—[0,a] and 4;,: 4-[0,b], ¢ =1,2,3, are
continuous on 4;

3° there exists a non-negative and continuous function

w: AXRL—>R, (# = (%,...,%,)e R} <2ze¢R" and z; > 0),

non-decreasing with respect to the last four variables z, p, q, r, and which
fulfils the condition
w(z,y,0,0,0,0) =0;

moreover, for any (z,¥,2;, P;, ¢, ";)e AX R i =1,2, we have the
inequality
(6) 1f (% Yy 219 P1s Q15 T1) —F (25 Yy 225 P2y €25 72)]

< (2, Y, Ry — 2|y 1D1—Daly 11— Qels Ir1—12]).

Assumption H,. Suppose that
1° there exists a non-negative and continuous function §: 4—R
being a solution of the inequality

71(z,¥) 81(z,v) 0a(z,v)
(7) w(-’”;y’ f f g(u, v)dudv, f g(?’z(way)’”)dv7
0 0 0
73($’”)

[ 9w, bs(@, y))du, g(a(2, 9), B(2, 9))) +h(z, ¥) < 9(=, 9),
where

h(z,y) = sup sup |f(&,9,0,0,0,0)];

o<é<zr 0<n<y

2° in the class of functions satisfying the condition

0<g(z,y)<d(z,9), (®,y)e 4,

the function g, g(x, y) = 0 for (x, y)e 4, is the only measurable solution

of the equation
71(3’”) 61(311/) dZ(zv”)

8) g(=,y) = w(*’”; Y, f f g(u, v)dudv, f g(}’z(m’ Y), ”)dv,
0 0 0
3(

z,v)

[ glu, bs(@, ) du, g(a(z,9), B(=, 9)))-

~
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Remark 2. It is easy to prove that conditions 1° and 2° of H, are
fulfilled if inequality (7) has the form

71(317) ol(z!y) d2(zo”)
E, [ [ gu,vdudv+E, [ g(r:(e,y),0)dv+
0 0 0
r3(Z,v)

+E, [ g(u, bs(w, 9))du+ K, g(a(z,9), B(x, ) +h(z,9) < g(2,9),

(1}
where K;, ¢ =1, 2, 3, 4, are non-negative constants and

K,ab+ K,b+Kia+ K, <1.
Assumption H;. Suppose that
1° there exists a function w: A4—R., non-negative, continuous
and non-decreasing with respect to # and y, which is a solution of the
inequality
Ty v x
w(a}, ?hffg(uy ”)dud”’fg(wy ”)d"”f g(u, y)du, g(ke, l?/))+
00 0 0
+h(z,y) < g(®,9),

where h(z, y) is defined as in (7) and %, ! are given constants, 0 < k < 1,
0I<]1;
2° in the class of functions satisfying the condition

0<yg(z,y) <w(x,¥), (z,y)e 4,

the function g¢(z,y) =0, (x,y)e 4, is the only measurable solution of
the equation

zy Yy x

g(@,9) = o(e,y, [ [gu, v)dudv, [ g(z, v)do, [ g(u, y)du, g(ks, Iy)).
00 0 0

Let us define the sequence {g,(z, v)}, (v, y)e 4, by the relations

9z, y) =3(z,9),

r1(z,v) 6i(z v) 39(z,v)
Ini1(®,y) = w(wy?/a f f gn(u, v)dudv, f gn('}’z(m7?/)7 'v)d'v’
0 0 0
(9) 73(
3(Z,v)

[ gulu, ds(@, 9))du, gula(e,y), B(x,9))),

(¢, y)ed, n =0,1,...
LEMMA 1. If assumptions 3° of H, and H, are satisfied, then

(10) 0<9n+1(w7y)<gn(w7y)<g(w7y)7 (®,y)edy, m =0,1, ...,
gnl> 0,

where the sign 2> denotes the umiform convergence.
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Proof. From relations (7) and (9) we get

r1(x,v) 8;(z,v) 89(z,v)

0@ 9) =o(zy, [ [ g odude, [ g(re,y),v)do,
’ 0‘}'3(3.!/) ’

f go(us 85(, ¥)) du, go(a(=, 9), B(=, 9)))

,v) d3(z, v) 3a(z,v)

f (u, ”)dud""’f g('}’z(myy)yv)dv7

0

g

< w(wa Yy,

=
8

O"ﬁ

y3(Z,v)

w
-—

g(u, 8s(2, 9))du, §(a(@, 9), B(z, 9))) + h(z, 9)

o

<§(®,9) = go(z,y) for (z,9)e .
Further, if we suppose that

9 (2, Y) < gna (@, 9) <§(2,9), (2,9)e4

then
vl(tc,u) 8(=,y) éy(z,v)
Ini1(®,y) = w(“"7 Y, f n (%, 0)dudv, f gn('}’z(w,?/)"v)d'vy
o 0 0
7’3(“!”)

f gn (4, 8s(2, ¥))du, gu(a(@, 9), B(z, ¥)))

71(z,v) o (33 v) 8y(z,v)

w( ’?/’f f In—1(u, 'v)dud'”’f gn—l(?’z(w’?/),'v)dva
03(-"711) ’

f In— 1(“: 6s(m7y))du’ gn—-l(a(xr?/)’lg(w’?/)))

——gn(wy?/) g(x 7y)7 (wyy)GA-

Since the sequence of continuous functions g, is non-increasing and
bounded from below, it is convergent to a certain measurable function
¢ such that 0 < ¢(z, y) < g(z, y) for (z,y) ¢ A. By the Lebesgue theorem
and the continuity of w it follows that the function ¢ satisfies equation (8).

Now, from assumption H,, we have ¢(z,y) =0, (z,y)e 4.

The uniform convergence of the sequence {g,} in 4 follows from
the Dini theorem. Thus the proof of Lemma 1 is complete.

Let us define the sequence {g,(x,¥)}, (x,y)e 4, by the relations

~

60(9% y) = w(r,y),

zy y
(11) 4 §n+l(w’ y) = w(w, y,ff&,,(u, v)dudv,f&n(w, v)dv,
00 0

x
[ onl, 9)du, g, (ke, ), (z,y)ed, n =0,1,...
0

|
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We have then

LEMMA 2. If assumption H; is satisfied, and

1° 0<yi(z,y) < 0<(2,y)<y, ©+=1,2,3, 0< a(z, y) <k,

0<Bz,y)<ly, 0<k<1,0<I<1, (z,y)c4,

2° the function o is non-decreasing with respect to x,y, 2, p, q and r,
then

(i) the functions g,, n =0,1,..., are non-decreasing with respect
to z and vy,

(i) 0 < gni1(2,9) <gu(@,y) <w(x,y) for (,y)ed, n =0,1,
g—>0 in 4,

(i11) the function w satisfies inequality (7) and 'o,f gz, y) <w(z,y),
then 0 < g, (%, y) < gn(@,¥), (®,9)ed, n =0,1,

2. The existence of a solution of equation (5). In order to prove the

existence of a solution of equation (5) we shall show that the sequence
{#,} defined by the relations

Z(z,y) =0,
7l(z:”) 61(3’”) 62(zly)
Znt1(2y Y) =f(‘v7?/7 f f Zp(u, v)dudv, f zn('}’z(w’?/)y'v)d”’
(12) 4 0 0 0
r3(z,v)

f zn(u’ 0s(x, ?/))du, z,,(a(m, Y), Bz, ?/)))
for (z,y)ed4,mn =0,1,...

is uniformly convergent to a solution of equation (5).

THEOREM 1. If assumptions H, and H, are satisfied, then in the set A
there exists a continuous solution z of equation (5). The sequence {2,} defined
by (12) converges in A uniformly to z, and the estimations

(13) 1Z2(z, y) —2, (2, ¥)| < gu(®, ¥), (,y)ed, n =0,1,...,
and

(14) Z(z, ¥)| < g(x, ¥), (%, y)e 4,

hold true.

A solution z of (b) is unique in the class of funmctions satisfying (14).

Proof. First, we shall prove that the sequence {z,(z, ¥)}, (#,y)e 4,
fulfils the condition

(15) 12, (2, ¥)| < G (2, ¥), (x,y)ed, n =0,1, ...
Evidently,
Izﬂ( 7y)| =0<g(x 7?/)7 (m’y)fd-
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Let us suppose that inequality (15) is true for » > 0. By the defini-
tion of z,(x,¥), (,y)e 4, and, by condition 3° of H,, we have

yl(z’y) 61(z 1/) 62(z’y)

arr@ ) =|fle, 9, [ [ zlw,v)dudo, [ z(rele,y), o)do,

0
y3(Z,v) _
zn(uy ds(w, y))du7 zn(a(xy Y), B(z, y))) -
0
_f(m7 Y, 07 O, 07 0)+f(w7 Y, 07 0’ 0’ O)!
r1(x,v) 8y(z,y) 89 (x,y)

<w(m,y,f f Izn(uyv)ldudvyf |zn(72(a77?/)7”)|d’07
[1} 0 0
v3(z,¥)

[ leufu, (@, 9)|du, |2 (a(@, 9), B(@, ¥))|) + k(= 9)

0
r1(z,y) 6;(z,¥) 89(z,v)

<w(w,y, f f (u, v)dudv, f g(yz(myy)yv)dva
0 0 0
73(2,y)

[ §lw, 85(@, y))du, §(a(w, ), Blz, 9)) + Rz, y)

0
<g(w,y)
for (z,y)e 4. Now (15) follows by induction.
Next, we prove, again by induction, that
(16)  [onir (@) Y) —2u(@, Y < gu(®,9), (#,9)ed, n,r =0,1,...
By (15),
2 (2, ¥) — 20 (@, Y)| = |2, (2, ¥)| < G(2, y) = go(@, ¥),

(,y)ed, r =0,1,...
If we suppose (16) to be true for n,r > 0, then

Prirs1(®y Y) — 2,1 (@, ?/)l

1’1(3 V) é;(=,9) 9 (z,v)
’f(.’l?, Y, f Znir(U, v)dudo, f zn+r(72 (%, ¥), 'v)d'va
o 0 0

r3(x,v)

z'r.+r(u’ 0y (, ?/))du, zn+r(a(w’ Y), B(w, ?/))) -

0
7;1(3:”) 61(1’11) 62(“’!")

—f(w7y7f f zn(uav)dud'v’f zn('}’z(xy?/)’v)d'vv
0 0

2a(u, 33(@, 9)) du, 2, (a(z, 9), f(, ¥)))

<

0
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r1(z,v) d;(z,v) d2(z,y)

< w(w7 Yy, f f 12n 47 (%, ©) —2, (4, v)| dudo, f Izn+r(72(w7 Y), 'v)_
0 0

0

r3(2,v)

- n()@(w’y)’v)ldv’l f lzn+r(u7 63(w7 ?]))— n(u7 63(w7 y))!du7

0

Izn+r(a(w7 Y), B(=z, ?I)) _zn(a(w7 Y), B(=, ?/))')
71(2,v) 0)(x,v) % (z,v)

<‘°(m’?/’f f gn(u’v)d“d"”f gn('}’z(w’?/)’v)d'v’

73(,9)
gn('“” 03(x, ?/))du, gn(a(w’ ¥), B(z, ?/)))

0

= Gnt+1(%, ¥),

which completes the inductive step of the proof of (16).

By Lemma 1 we have g, — 0 in 4, whence and from (16) we infer that
2, —> % in A. The continuity of z follows from the uniform convergence
of the sequence {2,} and from the continuity of all functions z,.

If r—o0, then (16) gives estimation (13). Estimation (14) is implied
by (15). It is obvious that Zz is a solution of (5).

To prove that the solution z is unique in the considered class let us
suppose that there exists another solution 2z defined in 4 and such that
Z(z, y) # 2(z, y) and |2(2, y)| < (@, y) for each (x,y)e 4.

By induction we get

|5(.’L‘, Y)—2p (2, Y)| < gn(2y y), (,9)edy, n =0,1,...,

whence it follows that z(x,y) =z(x,y), (,y)e A. This contradiction
proves the uniqueness of zZ, and so the proof of Theorem 1 is completed.
Now we can formulate the analogous theorem for the equation of
Volterra’s type.
THEOREM 2. If assumptions H,, H,, and 1°-2° of Lemma 2 are fulfilled,
then the assertion of Theorem 1 1is true with w(z, y) instead of §(x, y), and
the estimations

Ii(m,y)— n(w,y)|<§n(:v,y), (m,y)eA, n=0,1,...,
and
Z(z, y)| < w(z, y), (z,y)e 4,
also hold true.

Proof. We prove that assumption H, is fulfilled. Since the function
w 1s non-decreasing, it satisfies the same inequality as g. Let g be a measur-
able solution of (8) in the class 0 < g(x, y) < w(x, y), (2, y)e 4.
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By induction we get
0<g(@,y)<gul(®,9), (2,9)ed,n=0,1,...,

and because g, (z, y) -0 for (z, y)e 4, then g(z,y) =0, (z, y)e 4. Hence
assumptions of Theorem 1 are fulfilled and g, (z, ¥) < g.(z, ¥), (z, y)e 4.
Then the proof of Theorem 2 is complete.

3. Uniqueness theorem. Now we shall give conditions under which
equation (5) has at most one solution (conditions will not guarantee the
existence).

THEOREM 3. If assumption H, is satisfied and the function m, m(z, y)
= 0 for (z,y)e 4, is the only non-negative, finite and measurable solution
of the imequality

71(z,9) 4(z,v) 8(x,y)

17 m@,y) <oy, [ [ m,v)dud, [ m(ye(a,y),v)d,
0 (1} (1]
73(,v)
f m(“’aa(‘”’y))du’m(a(mﬂ/)’ﬂ(a’a?/)))7 (z,y)e 4,

then equation (5) has at most one solution in the set A.

Proof. Let us suppose that there exist two solutions 2 and z of equa-
tion (5) in 4, #(z, y) = 2(x, ¥).

Now, from condition 3° of H,, we have

#(z, y) —2(x, y)|
' 71(z,v) 61(:lr:.u)~ vflz(m:,u)~
=lf(w7y’ f f Z(u, v)dudv, f 2(72(377 y)v"))dv’
0 0 0
73(93411 5
f z(u,ds(x,y))du, z(a(x) Y), B(x, :‘/))) -
’ 71(Tv) 8)(x) _ d9(2,v)

—flesy, [ [ #(u,v)dudv, [ Z(yy(a, y),v)do,
0 (1} 0
73(2:'1/)~

f E(“; 03(x, y))du’ Z(a(m, Y), B, y)))l
0
r1(z.v) 6y(z.) B .
< w(w,y, f |2(u, v)—2(u,v)|dudv,
0 (1}
8o(x,y) v3(z.y)

[ B, 9),0) —2(va(@, 9), o)l dv, [ F(u, os(a, 9)—
0

—z(u, 8(z, 9))|du, |7 (a(z, ¥), B(z, ¥)) —
—2(a(z,9), B(=,9))]) (2, 9)e 4,
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Putting
m(w,y) = B(z, y)—2(=,¥)l, (@,y)e4,
we infer from (17) that m(z, y) = 0 for (z, y)e 4, i.e., 2(z,y) = 2(z, ¥),
(z,y)e 4. This contradiction proves Theorem 3.
Remark 3. If assumption H, is satisfied, then the function m,
m(xz,y) =0 for (z,y)e 4, is the only measurable solution of (17) in the

class 0 < m(z,y) < g(z,9), (@,9)e 4.
Indeed, we can prove by induction that

0< m(z, y) < gn(z,y), (,y)ed, n =0,1,...,

and if n— oo, then, in view of Lemma 1, we have m(z, y) = 0 for (z, y)e 4.
Remark 4. If assumptions H, and 1°-2° of Lemma 2 are satisfied,

and the function ¢, g(x,y) = 0 for (z, y)e 4, is the only non-negative,

non-decreasing, finite and measurable solution of the inequality

x Y

v
(18)  g@ y)<w(o,y, [ [ g(u,v)dudv, [ g(z,v)dv,
0 o0 0

[ 9w, y)au, g(kz, ly)), (2, 9)e 4,

0

then equation (5) has at most one solution.

4. Continuous dependence of solutions on the right-hand side of
equation (5). Let us consider the second equation

71(29) 81(z.9) 35(2.9) B

(19) pl@,y) =P(z,y, [ [ pu,v)dudo, [ p(r.(e,y),)d,
(1] 0 0
73(20)

[ o, 3@, 9)du, p(a(@, ), B(=,9),

where functions P, y;, é;, a, 8 have the same properties as f, y;, é;, a, B
in assumption H,, ¢ =1, 2, 3. '
THEOREM 4. If assumption H, is satisfied, and
1° 2z and P are solutions of equations (5) and (19), respectively,
2° the sequence {u,(z,y)}, (x,y)e 4, defined by the relations

uy (@, y) = 12(2, y)| + |p (2, y)I, (%,9)e 4,

71(z,v) 61(z.v) 35(2,v)
Unia (@5 9) = 0(2,9, [ [ up(u,v)dudv, [ u,(ys(e, ), v)dv,
0 0 0

Y 3 (xl”)

[ talu, 85(@, 9))du, u,(a(e, 9), B(=, 9))) + R(z,y), = =0,1,...,
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_ at r1(x.¥) 4;(z,y) dy(,v) _
h(way)=|f(m7?/’ f f P(u,v)dudv, f p('}’z(w’y)s'v)d'v’
0 0 0

73(2,9)

[ B(w, 85(=, y)) du, P(a(a, y), Bl, ¥))) —P(x, y)

0

)

has the limit u(x,y) for (z,y)e 4,
then

(20) Z(z, ¥)—D (2, )| < u(z,y), (@,9)e4.
Proof. Let
u(@,y) = 2@, y)—P(z,9)], (,9)ed.
Thus, for (%, y)e 4, we have

71(z.¥) 9;1(z,v) 8o(x,y)

u(@,9) = |flo,y, [ [ Fu,v)dudo, [ Z(ps(a,9),9)dv,
0 0 0
v3(z,v)

[ 2w, 8s(e, y)du, (a(2, 9), f(=, ) —B(z, )|

0
r1(@y) 6,(z,v) 85(x,v)

<|f(w7?/9 f f Z(u, v)dudv, f E(Yz(m’y)f'v)d”’
0 0 0
73(z:v)
f E(uy 63(w’y))du7 E(a(w,y),ﬁ(w,y)))—
0
r1(z,¥) 8;(z,v) 3q(z,v)
—fle,y, [ [ Blw,v)dudv, [ B(ys(=,9),v)do,
0 0 0
v3(x,v)
[ Blu, 8s(a,y))du, B(a(z,9), B(=, 9)))|+
0
ri(z.¥) 8)(z,v) dq(x,v)
+|f(m’ Y, f f P(u, v)dudv, f ?('}’2(‘1’7?/)’”)(1”9
0 0 0
v3(z,¥)

Blu, 8:(w, ) du, B(a(z,9), B(=,9)) —B(e,9)|
[1]
r1(zv) 8;(x,)
<ole,y, [ [ [Ex,0)~Bx,v) dudo,
0 (1}
So(z,y) y3(z,v)

[ [Era(@,9),0)—B(re(®,9),0) |dv, [ [2(u, ds(2,9)—F(u, 8s(x,9))|du,

IE(a(m, Y), Bz, ?/)) —ﬁ(a(w, Y), B(, ?/))I) +Z(w; Y).

9 — Colloquium Mathematicum XXIX.2
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Since
u(z, y) < 2(z, y)| + 1D(z, y)| < (2, y), (,y)e 4,
we get by induction
w(@,y) < u(®,9), (2,9)ed, n=0,1,...

Inequality (20) is implied by the last one for n —oo.

Remark 5. If functions %,, » = 0,1, ..., are finite and measurable,
and if there exists a Lebesgue-integrable function T: A—R. such that

[up (2, ¥)| < T'(2, y), (,y)edy, m» =0,1,...,

then the limit function % (see 2° of Theorem 4) is a finite and measurable
solution of the equation

71(z.v) 8)(z,v) O9(z,v)
wz,y) =ole,y, [ [ u(u,odudv, [ uly(z,y),v)do,
0 0 0

7’3(1!”)

f u(“y 68(‘”7?/))‘1“1u(“(“"ﬂ'/))ﬂ(wr?/)))‘*'}_‘(w,y)’ (@, y)e 4.

0

Rema.'rk 6. It follows from the proof of Theorem 4 that thistheorem
is true if in the set 4 there exists a non-negative and continuous function
k, satisfying the inequality

71(@.v) 4(z,v) d9(,)
w(”"? Y, (! Bf ko (u, v)dudo, ﬁf ko('ya(a” Y), 'v) dv,
y3(z.v)

[ ko(w, 85(x, 9))du, kyla(z, ), f(z, 9)))+

0

+ma'xlz(w7y)’uo(w7?/)]<ko(m9'y)a (z, y)e 4.

Now, in the class of measurable functions satisfyi_ng the condition
0< g(x,y) < ky(z, y), (x,y)e 4, there exists a function & being a solution
of the equation

r1(zv) 9;(z,v) 85(x,v)
w(-’”’y, f f g(u, v)dudv, f g(?a(-’”’y)’”)d'va
0 0 0

Ts(z!”)

f g(“’ ds(z, y))du, g(a(wy ), B(x, y))) +Z(w7?/) =g(z,y), (2,9)e4.
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Put

71(z.v) 83(2,v)
knia(@,9) = oo, y, [ [ Fou(u,v)dudo,
0 0
ds(z,v) 73(2>y)

[ Ealrs@ 9),0)do, | Eulu, 84(@, 9))du, kufa(a, 3), Bla, 9)) +

0 0

+h(z,y), (®,9)ed, n=0,1,...
We see that

Up (2, Y) < Kp(2, Y), kpir(2yy) < kp(z,y), (®,y)ed, n =0,1,...,

whence u(x,y) <k,(z,y), (®,y)ed, n =0,1,... (u(r,y) is defined
as in the proof of Theorem 4). From the last inequality we get wu,(z, v)
—>u(z,y), and u(z, y) < %(z,y) < k(z, y) for (z,y)e 4.

THEOREM 5. If assumptions of Theorem 4 (except for 2°) and 1°-2°
of Lemma 2 are satisfied, and the sequence {u,(x, y)} defined by the relations

ty(z,y) =sup sup{E(&, n)|+IB(& )}, (2,9)e4,
<é<z <<y

zy y
’02,,_,_1({1:‘, Y) = w(w’ y’ff'a‘n(“y v)dudv,f'ﬁ,,(m, v)dv,
00 0

x
[t (0, y)du, ity (ko, ly)) +sup  sup A(£, 1)
° 0<é<z 0<n<y

for (®,y)ed, n =0,1,..., has the limit u(z,y), (x,y)e 4, then

(21) Iz(w,y)—ﬁ(m7?/)|<&(m7 ¥), (x,9)ed.

Proof. It is obvious that functions #, are non-decreasing with respect
to z and y for (z, y)e 4, » = 0, 1 ... Further, we get by induction u,(z, ¥)
< Uy(z,9y), (®,9)ed, n =0,1,..., where the sequence {u,(z,y)} is
defined as in 2° of Theorem 4. Hence u(x, y) < %, (2, ¥), (®,y)e 4, n =
=0,1... (u(x,y) is defined as in the proof of Theorem 4), and if n — oo,
we have (21).

5. The case of a function w linear in r. At first, we assume
w(®,Y,2,0,4,7) = Az, y)r, Alz,9)=0, (2,9)ed.

In this case equation (1) is purely functional, but its discussion is
needed in the sequel.
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Let
(@, y) =2, ay,(2,y) = a(an(a"’?/)’ .Bn(wa?/))’

Bo(2,y) =y, ﬂn+1(w7?/) =ﬂ(an(w,y),ﬁn(w,y)),

A(z,y) =1, An+1(a’7?/) =”l(a,-(w, Y), Bi(z, ?/))7

i=0

(22)

(x,y)ed, n =1,2,...,

where a(z, y) and f(x, y¥), (x, y)e 4, satisfy assumption H,.

It is obvious that a,(x, y)e [0, a] and B,(x, y)e [0, b] for (z, y)e 4,
n=0,1,...

Now we formulate lemmas by which assumption H, is fulfilled in
this special case.

LeMMA 3. For any function h: A—R. the condition

oo

(23) D) M@, Nk (an(z,9), Bu(@,9) < o, (3,9)¢ 4,

n=0

18 mecessary and sufficient for the equation

(24) g(z, y) =l(w7?/)g(a($7?/)7 ﬁ(w,y))—l—h(w,y), (w,y)e 4,

to have a non-negative solution g defined in A.
If condition (23) is fulfilled, then the function g,

=]

(28)  §(%,9) = D M(@, Nh(an(®,9), Bul®,y), (2,9)e 4,

n=90

18 a solution of equation (24), and

(26) lim 4, (=, ?/)g'(an(w, Y)y Bul@, ?/)) =0, (z,y)e 4.

1—»00

There is mo other solution of equation (24) in the class of funmclions g
satisfying the condition 0 < g(x,y) < g(x,y).

Proof. Necessity. Let ¢ be a non-negative solution of equa-
tion (24). We prove that, for (z,y)e 4 and n =0,1,..., {

27)  g(@,9) =D A(@, 9h(ax,9), Bi(w, y)+

i=0

+ Ans1(@, y)g(an-i-l(m? Y)y Bnsr(@,y y))

Evidently, formula (27) is true for n = 0. Suppose it to be true for
n > 0. By the definitions of sequences {a,(z, ¥)}, {B.(2, ¥)} and {4,(z, ¥)},
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we have

_g(m’ y) = A, y)g(a(wa Y), B(x, y)) +h(z,y)
= Az, y)zli(a(wy Y), B(x, y))h(a,(a(m, Y), ﬂ(wyy))’

i=0
Bi(a(e, ¥), B(w, 9)))+
+A(@, Y) Anya(a(@, 9), B(®, 9))9(anr1(a(®, 9), B(2, 9)),
Bur(a(@, v), B(x, ¥)))+h(z, y)

n+1
= D) M(@, ) h(a(@,9), fulz, 9)) + ho(@, D) D0 (2, 9),
Bo(z, ?/)) + Apya (@, ?/)g(an+2(wr Y)s Bns2(, y))

n+1

= D L(®, Y)h(a(@, 9), B(@, ¥) + Anya (@) 9)9 (ansa(@, 9),

1=0

.Bn+2(~'”r?/))a (z,y)e 4.

Now we obtain (27) by induction.
Since ¢ is a non-negative solution of equation (24), we infer from
condition (27) that

9(@,9) = D) ki@, 9)h(a(@,9), Bi(e, 9), (2,9)e 4,

i=0

whence (23) follows for n —oo.

Sufficiency. If condition (23) is satisfied, then the function §
defined by (25) is a solution of (24). It follows from the condition i(x, y)
> 0 for (, y)e 4 and from the definition of the sequence {1,(x, ¥)} that
g is non-negative. Since each solution of (24) fulfils condition (27) and §
is a solution of (24), then (27) yields (26) for n —oc.

It remains to show that no other function g, 0 < g(z, ¥) < §(w, ¥),
(z, y) e 4, i8 a solution of (24). Assume a contrario that a function g satisfying
the last inequality and distinet from g is also a solution of (24). Since
condition (27) is fulfilled for the solution g, we get

0< g(w, y)—.“;(w’ y) < lim 2,(x, y)g(a,,(a:, Y)y Bu(, ?/))7 (z,y)e 4.

Now according to (26) we have g(z, y) = g(, y). This contradiction
proves the uniqueness of the solution g of equation (24) in the class of
functions satisfying the econdition 0<g(z,¥)<g(z,¥), (x,vy)e 4.

LeMMA 4. If
1° 0 < gu(@, 9) < @z, ), (z,y)e 4,
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2° 2&&(‘”7 y)cpz(a,,(w, Y)s B, ?/)) < o0, (x,9Y)e 4,

Nne=0

then the functions

(@, 9) = D (@, 9)0i(0n(2, 9), Ba(@,9))y  (@,9)e 4, i =1,2,

n=0

are non-negative solutions of the equations

(28) v(z, y) = A(=, y)”(a(w’ Y), B(x, y))‘*‘?’i(w’ Y), (x,9)ed,i=1,2,

respectively, and

(29) '}Lﬁ l,l(w,y)a‘;i(a,,(m, y),ﬂn(m,y)) =0, (z,y)ed, 1 =1, 2.

Moreover, functions oy, © = 1,2, are unique solutions of (28) in the
class of functions satisfying 0 < v(z,y) < T(2,v), (2,9y)e 4.

Proof. It follows from Lemma 3 that the function ¥, is the unique
solution of (28) in the class 0 < v(z, ¥) < 9,(2, ¥), (v, ¥)e 4, and the func-
tion 7, is the unique solution of (28) in the class 0 < v(z, ¥) < ,(x, ¥),
(x,y)e 4, and that (29) is true. It remains to prove that function %, is
the unique solution of (28) in the class %,(z, ¥) < v(z, ¥) < ¥(z, ¥),
(z, y)e 4. Assume that there exists another solution » of (28) in this class,
x(x,y) = v,(x, y) for (x,y)e A. Since any solution r; of (28), : =1, 2,
satisfies the conditions

(30)  7i(@,y) = D) M@, V)@i(an(x, 9), Bul@, ¥) +

+Am+1(w’y)rt(am+l(w7?/)7 ﬂm+1(m7?/))7 m=0,1,...,

then, for (z, y)e 4, we have

0< #(®,y)—0,(2,Y) = Apy, (@, y)x(am+1(w, Y)s Bmsr (@, ?/))—'
—Ani1(Z, Y) 0y (am+1($, Y)s Bmi1(2y ?/))
< Appr (@, ?/)'72(%+1(w’ Y)s Bm+1(2y ’!l))-

Now, if m —o0, we have x(z, y) = 9,(x, ¥), (, y)e A. This contradic-
tion proves the uniqueness of the solution ¥,(x, ¥), (#,y)e 4, of (28) in
the class of functions 0 < v(x, y¥) < Uy(2, ¥), (¢, ¥)e A. These considerations
and Theorem 1 imply

THEOREM 6. If assumption H, is satisfied, and
1° w(x,y,2,p,4¢,7) = Az, y)r, A(2,9) =0, (x,y)e 4,
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2° 3 1(@, )b (00(®, ¥), Ba(@, ¥) < 00, (@, Y)e 4, where

h(z,y) = sup sup |f(&,9,0,0,0,0), (@, y)e 4,

<i<zr 0<n<y

then there exists in A a solution Z of equation (5) with the properties
z2(z, )| < g(z,y), (x,9)ed,

1Z(2y y) — 25 (2, ¥)| < 90 (@, ¥), (z,y)ed, n =0,1,...,
where

9@, y) =g(z,y) = Zli(a” ?/)h(ai(my Y), Bi(z, ?/))7 (z,y)e 4,

=0

Ini1(2,9) = szw,y)h(m (@, 9), Bi(@,9)), (#,9)ed, n=0,1,...

i=n
The solution Z is unique in the class of functions satisfying the ine-
quality |z(z, )| < §(x, y), (z,¥y)e 4.
Theorem 4 implies the following
THEOREM 7. If assumption H, is satisfied, and
1° w(z,9,2,p,4q,7) = Az, y)r, (¥,9)e 4,
2° functions Z and P are solutions of equations (5) and (19), respectively,

3 3 3,(@, 4)¢(an(®@, 9), Bu(@, ¥)) < o0, (2, Y)< 4, where

n=0

c(z,y) >.ma,x{|2(m, Y +1D(x, ), Z(w’ Y)}s (,y)e 4,

and h(z,y) is defined by condition 2° of Theorem 4,
then

[°]

(@, 9) =B, Y < D An(@, 9 (0n(2,9), Bale, ¥)), (2,9)e 4.

6. Discussion of equation (5) being of Volterra’s type for linear w.
Now we are going to consider the case

(31) w(r,Y,2,P,4q,7) = Kz2+Mp+ Nq+Ar, (x,y)ed,

where K, M, N and A are non-negative constants.

In this section we assume that the functions y;, 6;, a, 8,7 =1,2,3
satisfy the conditions

O0< y(z,y) <z, 0K »,y)<y, +=1,2,3,
(32) 0<a(z,y) < ke, O\ﬂ( yY) < ly’
0<k<1, 0<IL1, (#,y)e 4.
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Now, the sequences {a,(%,¥)}, {Ba(2,%)} and {4, (2, )}, (#,¥)e 4,
defined by (22), satisfy the relations

(33) a,(z,y) < k"z, B,(x, Py, IAu(@,y) =21,
(x,y)ed, n =0,1, ...
We have
LeMMA 5 [1]. If te [0, + o) and ae [0, 1], then
(34) e Ca(l—et)+et.
LemMA 6. If

1° the function

H(z,y) = Y 1"h(k"a, I"y) < oo,
n=0
18 continuous for (z,y)e 4,
CoO<iE<], 0<A<],
F0<Ek<1, 0IL],
4° the function h 18 conmtinuous, non-negative and mon-decreasing in
the set A,
then
(a) there exists a unique solution g* of the equation

N m,
(35) =K Z }."f f” (w, v)dudv—l-Mz;I }."f”g(k"m, v)dv +
Nne=0 n=0 0
o0 k"':z: ()
+N Y[ glu, Py)du+ Y k(R w, My), (@, 9) 4,
n=0 0 n=0

and this solution is continuous, non-negative and non-decreasing in the set A,

(b) in the class of measurable functions satisfying the condition
0< g(x,y) < g*(z,y), (z,9)e A, the function g* is the unique, continuous,
non-negative and non-decreasing solution of the equation

Ty v
(36)  g(z,y) = ig(ke, ly)+K [ [g(u,v)dudv+ M [ g(w,y)do+

+X [ g(u,y)du+h(z,y), (@,9)e4,
0

(¢) in the class of measurable functions satisfying the condition
0<g(x,y) <g*(x,9), (x,9)e 4, the function g, g(x,y) =0 for (z,y)e 4,
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8 the unique solution of the inequality

z Y
37 g(z,y) < Ag(kx ly)+Kffgu v dudfv—i—Mfg:v v)dv +
00

T

+N [ g(u,y)du, (z,9)e 4.

0

Proof. Let A be the operator defined by the right-hand side of
equation (35), and

lgll = max e~ X+ \g(z, y)| for ge Oy,
<z<<
o<yt

where

L>1 M+N+[M+N2+4K1/2
2 (1-A 1—4k 1—-Al  1-—2k 1— Akl

and C, denotes the class of continuous functions in 4.
Now, in view of Lemma 5, we have, for g, ze C,,

l4g — Az
kn
< Kmax e~ L@+ 2 }."f f [g(u, v)—2(u, v)]e” Lut+?) gllut?) dud'vl +
=
oo ny
+ M max e~ L=+ 2)."[ [g(k"x, v)—z(k"x, v)]e‘L("n“"’eL"‘"‘”")dv' +
0<y<b a0 0
oo k"
+ Nmax e—L($+1I) Z }_nf [g(u’ l”y) _z(u’ lny)]e—L(u+t”u) eL(u+l”y) dul
sr=p a0 0
K [o0]
< an ”g . ZH APmax [eL:c(k”—l) _ e—Lz] [eLu(ln—l) _ e—Ly] +
e 0<z<a
. o<y<b
M N n La(i®-1) [ Ly(k"—1) _ ,—Ly
+—llg—2]| A"maxe [e —e Y]+
L <<r<a
=0 o<y<b
N - . o
4+ — ”g _ z” }."ma,xel’"(’ -1) [eLz(k -1) __ L:c]

0<z<a
n=0  o<y<d

<Trlg—al > (AR — (1 — "]

n=0
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- ug—znz (WP[L— e 21+ lg - znZ (Ak)[1—6~2]

n=90

frE 2 (E L Ny
Sl 1—am "z \i—a T |

Since

1 K +1 M N N -1
L 1—ikl | L\1—a " 1—2%

1 M N M N \? 4K T2
forL> + +[( + )+ ] },

1—A — Ak 1—A  1—-4k 1— Akl

we infer by the well-known Banach fixed-point theorem that equation (35)
has a unique solution g¢g* defined in 4. This solution is the limit of
a uniformly convergent sequence {z,} of non-negative and continuous
functions 2, defined by the relation
Z(z,y) =0, (z,9)e 4,
Zo1(®,y) = A2, (2,Yy), (#,y)ed, n=0,1,...,

and, therefore, it is continuous, non-negative and non-decreasing, because
2, are 8o. This completes the proof of part (a).

‘We prove that the function g* satisfies equation (36). Indeed, since
g* fulfils equation (35), we have

R(z, y)

T Y
L g*(@, y)—2g*(ka, ly)— K [ [ g*(u, v)dudv—
00

Yy 4
—M [ g*(s, V)dv—N [ g*(u, y)du—h(a, y)
0 0

o knt+lg ntly 0 m+ly

= g*(z,y)—A[E D" f f g (w,0)dudo+M X' 2* [ ¢* (k" v)do+
" k”+l:'° n=0 0
+N Z'An f g*(u, " y)du + 2 Ph(E e, l’”’ly)]—
n=0 =0

—Kffg*(u,'v)dud'v—Mfg*(w,'v)d'o—-Nfzg*(u,y)du—h(w, )

wm+ lx m+ 1”

= g*(x, ¥)— K(Zl"“ f f g*(u, )dudv—!—ffg*(u v)dudo)—

n=0
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ln‘l‘ly

—M( 2 A"’“ g*(k"t'z, 'v)d1)+fg*(w 'v)d'v)
" k"(‘)l'lx

= Zl"“ f g* (v, l"“y)du+fy w, y)du) —

n=0

_ ( 2 ].'H'lh(k“'i'lw, l"“y)+h(w, ?/))

n=0
o kRa My o my
=g*(z,y)— K Z l"f f g*(u, v)dudv— M Z A”f g*(k"x, v)dv—
0 0 n=0 0
K"z
—N Z‘ z“f g*(u, "y)du — 2 h(k*z, "y) =0,
n=0 n=0

and thus g* is a solution of equation (36).
We prove that any measurable solution g of equation (36) satisfying
the condition 0 < g(x, y) < g*(2, ¥), (%, ¥) € 4, i8 a solution of equation (35).
Let go(®,¥), (#,y)e 4, be a measurable solution of equation (36)
satisfying the condition 0 < g,(z, y) < g*(x, ), (z,y)e 4. Put

T v Yy x
91(2,9) = K [ [ g5(u, v)dudo+ M [ go(a, v)dv+ N [ go(u, y)du+h(z, y).
00 0 0
Now, for (z,y)e 4, we have

(38) s(@,y) = Y ig,(k'x, Iy)
n=0

oo Ktz ™y oo my
= KZ)."I f go(u, 'v)dud'v+MZ}.”f go (K", v)dv+
n=0 0 0 N=(
© k"z
+N [ golu, Uy)du+ ZA"h(k"w,z"w = Ag,
n=0 0

< Kab max |g, (2, y)| 2(lkl)”+MbmaXIyo(w,?/)l Z(W

0<z<a - 0<z<a -
o<y<b n=0 o<y<b n=0

+ Namax |g,(, y)| 2(170”+H( z, ¥) < oo,
<z<a n=0
o<y<d

and it follows from Lemma 3 that the equation

(39) 9(z,y) = Ag(kz, ly) +¢,(®,¥y), (x,y)e 4,
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with

=Kffugou fvdud'v+Mfgow v)dv +
00

+Nfgo(“1y)du+h(w7?/)7 (%, y)e 4,
0

has a unique solution in the class 0 < g(z, ¥) < (49,) (%, ¥), (4g9*)(z, y)
= ¢*(«, ¥), and this solution is the function s defined by s(z, y) = (4g,)(z, ¥)-
Further, we put

Ty b/ x
v2(@,9) = K [ [ g*(u, v)dudv+ M [ g*(@, 0)dv+ N [ g*(u, y)du+h(s, y).
00 0 0

It is obvious that equation (39) with ¢,(x,y) instead of ¢,(z, y)
also has a unique solution in the class 0 < g(x, ¥) < (4¢9*) (2, ¥) = g*(», ¥).
Now, from Lemma 4 it follows that the function s(z, y) = (4¢,)(z, ¥)
is the unique solution of (39) in the class 0 < g(z, ¥) < g*(x, ¥), (2, y) e 4.

Because g, is also a solution of (39) in the class 0 < g(z, ¥) < g*(», ¥),
(x,y)e 4, we have s(x,y) = g,(z, y)e 4. Hence g, is a solution of (35)
and, therefore, it is continuous.

Since each measurable solution of (36) in the class 0< g(=, ¥)<g¢*(z,¥),
(z,y)e 4, is a solution of (35), the function g* is the unique solution of
(35), and g* satisfies equation (36), we infer that the function g* is the
unique solution of (36) in the class pointed above. This completes the
proof of part (b).

Now we prove that the function g(z, y) =0, (z, y)e 4, is the unique
measurable solution of the equation

z vy
(40) g(x,y) = Ag(kz, ly) +Kffg(u, v)dudv +
00

v x

+M [ g(@,0)d0+ N [ g(u,y)du, (z,9)<4,
0 0

satisfying the condition 0 < g(x, y) < g*(x,¥), (z,y)e 4.

Let g,(x, y) be a measurable solution of (40) fulfilling this condition.
According to considerations of the proof of (b), we see that g, is a solution
of equation (35) with » = 0, but since the only solution of that equation
is g(x,y) =0, also g,(z,y) =0.

Now (e¢) is implied by Remark 3.

Thus the proof of Lemma 6 is completed.

Remark 7. If the function o does not depend on p, ¢, then assump-
tion 2° of Lemma 6 can be replaced by 0 < Akl < 1.

Hence and from Lemma 2 and Theorem 2 we infer
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THEOREM 8. If assumption H, s satisfied, and
1° conditions (31) and (32) are satisfied,
2° H(z, y) T 3 1"h(k"z, I"y) < oo, (,y)e A, where

n=0

h(z,y) = sup sup |f(&,9,0,0,0,0)
0<E<T 0y
and H is continuous for (x,y)e 4,
<<l 0],
£°20<k<1, 01K,
then there exists a unique and continuous solution z of equation (5) with the
properties

Z(z, ¥)| < g*(z,¥), (®,y)ed,
Z(z, y)—2, (%, )| < g2, ¥), (,y)ed, n =0,1,...,

where gy(z,y) = g*(x,y), (©,Yy)e 4, g*(x,y) is defined as in Lemma 6,

z v

v
Ins1(@,Y) = Mgk, W)+ K [ [g,(u, v)dudv+ U [ g,(z, v)dv+
0

00

T
+X [ga(u, 9)du,  (@,9)cd, n =0,1,...
0

The solution % is unique in the class of functions satisfying the inequality
l2(2, ¥)| < g*(2, ¥), (=, 9)e 4.
Remark 8. Condition 2° of Theorem 8 is fulfilled if

\f(»,9,0,0,0,0)| < B(r+y), (@,9)ed, B = const>0.

Theorem 5 implies the.following

THEOREM 9. If assumptions of Theorem 8 (except for 2°) are satisfied
and if

1° functions Z and D are solutions of equations (5) and (19), respectively,

oo

2° H(@,y) = Y i"y(k"z, I"y) < oo, (z,y)e 4, where
n=0

p(z,y) = ma‘x{ sup sup [[2(&, n)|+1D(&, )], ﬁ(w7 ?/)}, (,y)e 4,

0<é<z 0<7<Y
3° h(z, y) is defined by condition 2° of Theorem 4, and H is continuous
n A,
then
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(a) there exists a continuous, non-negative and non-decreasing solution
g of the equation

x Yy )
9(x,y) = Ag(ka, ly)+ K [ [ g(u, v)dudvo+M [g(z, y)do+
00 0

+Nfg(“7 y)du+vy(z,y), (@,y)e 4,
0

(b) the sequence {g,(x,y)}, (®,y)e A, defined by
9(,y) =9(=,9), (x,9)ed,

T vV 4
Gns1(®, Y) = Mn(ka, W)+ K [ [Gu(u, v)dudo+ M [ §, (2, v)dv+
0 0 0

+Nf§n(u7?/)d’“'+z(w7?/)7 (z,y)ed, n =0,1,...,
0

has the limit g*(x, y) in A, which is a continuous, non-negative and non-
decreasing function satisfying g*(x,y) < g(x,y), (z,y)e 4,
(e) the estimation |Z(x,y)—D(x,y)|l < g*(2,¥), (v,y)e 4, holds true.
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