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We recall * that a mob is a non-empty Hausdorff space S together
with a continuous associative multiplication, denoted by juxtaposition,
(ryy) >oy. Let A be any subset of the mob 8. The: algebraic radical
of 4 is defined to be the set {weS|z*e¢A for some integer k > 1} and is
denoted by #Z(A). This set A is said to be radically stable if and only if
#(A) = %#(A) holds. Obviously for any open subset A of S, A need not
be radically stable. The purpose of this paper is to study some properties
of the algebraic radicals of ideals in 8. Our main result is:

Under some special conditions, any open ideal A of 8 can be radically
stable without requiring that #(4) be closed.

Moreover, we will demonstrate that the notion of radical stability
of an ideal in abelian mobs is useful: it gives a necessary and sufficient
condition for the closure of a primary (prime) ideal to be primary (prime).

Throughout this paper, we use C to denote the closure of the set C
and O’ for the complement of (. Unless otherwise stated, § will be regarded
as a compact abelian mob with zero. The reader is referred to [4] for
terminology and notations.

1. Preliminaries. In this section, pertinent notations, definitions
and properties of algebraic radicals of an abelian mob S (not necessarily
compact) will be given. Most of them are well known results from ring
theory which will be used later.

Notation. Let A be a subset of S.

J(4) = AUV AS, that is, the smallest ideal containing A.

Jy(A) = the union of all ideals contained in A, that is, the largest
ideal contained in A if there are any.

Definition 1.1. (1) 4 mob S with zero is said to be 0-prime if and
only if whenever a,beS, ab =0, then a =0 or b = 0.

(2) A mob 8 is said to be an 2-mob if and only if for any two ideals I,
and I, such that I,nI, # @, either I, c I, or I, < I,.

* This research was supported by NRC Grant A-3026
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Definition 1.2. (1) An ideal P of S is said to be prime if and only
if abeP implies that aeP or beP.

(2) An ideal @ of 8 is said to be primary if and only if abe@ implies
that a<Q or there exists an integer %> 1 such that d*¢Q.

(3) An ideal R of 8§ is said to be semi-prime if and only if a2¢ R implies
that aeR.

(4) Let A, B be ideals of 8. Define 4 : B = {xeS|2#B < A} and call
it the ideal quotient of A and B.

It is easy to see that A : B is an ideal of 8.

Definition 1.3. (1) An ideal A is completely irreducible (irreducible)
if and only if whenever A is the intersection of a family (finite family)
of ideals, then A is a member of the family.

(2) An ideal A is w-reducible if and only if A is the intersection of
a family of open prime ideals containing A properly.

(3) An ideal A is strongly reducible (weakly reducible) if and only if A4
is the intersection of a finite family (infinite family) of ideals containing A
properly.

Facts 1.4. The algebraic radicals of 8 have the following properties:

Let A, B be any subsets of S. Then

(1) A < Z(A).

(2) A* < B implies that #(A) « #(B) for any k> 1.

(3) 2(%(A)) = Z(4).

If A, B are ideals of 8, then

(4) #(A) is an ideal of 8.

(5) Z(AB) = 2(ANB) = Z(A)NnZ%(B).

(6) If A is a primary ideal of S, then Z(A) is a prime ideal of § which
is the smallest prime ideal containing A.

(7) Let P, @ be ideals of S. Then @ is a primary ideal of S with
Z(Q) = P if and only if (i) Q =« P = Z(Q) and (ii) abe@, a¢Q imply that
beP.

The proofs of the above results are analogous to those in ring theory
and we omit the proofs. The reader is referred to [6].

2. Prime and primary ideals. We are going to study, in this section,
the prime and primary ideals of S, and, in particular, the algebraic radical
of such ideals and their relationship.

PROPOSITION 2.1. An tdeal N of S is a compact prime ideal if and
only if S/N is an O-prime mob.

Proof. Suppose N is a compact prime ideal of S. Then N is closed
in S§. The Rees quotient S§/N is formed by shrinking N to a single point
with the quotient topology. §/N is a mob. Recall that the multiplication
* of §/N is defined in the following way:
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a*b =ab if a,b and ab are in S—N,
a*b =0 if abeN,
a*hb =0 ifa=0o0rbdb=0.

If a*b = 0, there are two possible cases: either (i) a =0 or b = 0,
or (ii) abeN. In case (ii), since N is prime, we have aeN or beN. This
implies that a = 0 or b = 0 in 8/N. Thus in either case a = 0 or b = 0.
Hence S/N is 0-prime. Conversely, assuming that §/N is an 0-prime mob,
since 8/N is Hausdorff, the ideal N is closed in S and hence is compact.
Suppose z*y = 0 in §/N, then we have x =0 or y = 0 in §/N. This
means that xeN or yeXN in the mob S. Hence N is a compact prime ideal
of 8.

THEOREM 2.2. Let A be an ideal of S such that Z(A) is proper maximal
in S. Then A is primary if and only if S/Z(A) is an abstract completely
0-simple semigroup.

Proof. Suppose A is a primary ideal of S; then #Z(A) is a prime
ideal. As 8 is compact, it follows that #(4) is open by [4], p. 28. By
theorem 2 of [3], p. 677, Z(A) has the form J,(S —e¢) with ¢ being a non-
-minimal idempotent of S. Therefore there exists ¢2 = e¢¢Z(A). Now form
the Rees quotient S/#(A). Clearly, 8/%#(A) is 0-simple ([4], p. 39) and
contains e. Hence by [1], p. 6565, S/#Z(A) is completely 0-simple. Con-
versely, suppose that S/#(A) is completely 0-simple. Then there exists
an e = e¢#(A). Clearly, e is non-minimal. By the maximality of #Z(4),
we have #(A) = J,(S—e). By theorem 2 of [3], p. 677 again, #Z(A4)
is an open prime ideal of S. Now take xye A, then xye#Z(A). Thus xeZ(A)
or yeZ(A). This implies that A is primary.

COROLLARY. If E, the set of idempotents of S, is contained in a maximal
proper ideal J of 8, then J is a primary ideal of 8.

Proof. By [1], p. 655, 8/J is either the zero semigroup of order
two or else completely 0-simple. Since E < J, S/J contains no idem-
potents other than zero and hence §/J is the zero semigroup of order 2.
Suppose xyed,x¢J,y¢J. Then' xeS—J,yeS—J in §/J. Since S/J
is the zero semigroup of order 2, we have y* =0, 2* = 0 in S/J. This
implies that x2e¢J, y?eJ in the mob 8. Thus J is a primary ideal of §.

A. D. Wallace has proved the following result:

Let S be a compact mob (not necessarily abelian). Then each open
prime ideal is completely irreducible, and each completely irreducible
ideal is open by [5], p. 39.

One would naturally ask whether the irreducibility of an ideal @
in an abelian semigroup is a necessary and sufficient condition for @
to be primary. (This question was asked by A. D. Wallace in his lecture
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notes on topological semigroups, problem J6, p. 39 of [6]. We show here,
by giving a counterexample, that the answer is negative.)

Example 2.3. Let S be an abelian semigroup consisting of four
elements {0, a, b, ¢} with multiplication table.

°|Oabc
0|10 0 0 O
alO0 0 O O
b|10 O b b
c| 0 O b b

The sets {0, b}, {0, b, ¢}, {0, a, b} are ideals of 8. Now {0, b} = {0, b, ¢}
Nn{0, a, b}. It is easily seen that {0, b} is a primary ideal of §, but it is
not irreducible. Thus we have shown that primary ideals in abelian mobs
are not necessarily irreducible.

THEOREM 2.4. If @ is an open semi-prime ideal of S, then Q is w-re-
ducible.

Before proving this theorem, we need the following two lemmas.

LEMMA 2.5. @ is a semi-prime ideal if and only if Z(Q) = Q.

Proof. If Z(Q) = @, then it is easily seen that @ is semi-prime.
Conversely, suppose that Q S %£(Q), then there exists ae#(Q) with
a¢Q. Let k> 1 be the minimal integer such that a*<Q. Suppose @ is
semi-prime. Then k¥ must be odd. Write k¥ = 2n+1(n > 0). Since @ is
an ideal, we infer that a*t! = a*-aeQ. Thus a**! = a*"*? = (a"t!)2¢Q.
Since @ is semi-prime, it follows that a"*'eQ. This contradicts the mini-
mality of k. Hence #Z(Q) = @.

LEMMA 2.6. Let Q be an open ideal of S, then Z(Q) = () P,, where
{P,} are all the open prime ideals of S containing Q. ¢

Proof. Take weZ(Q). Then there exists integer k> 1 such that
x*eQ < P, for all a. Since P, is prime, z¢P, for all a, that is, xe(P,.

Hence #(Q) < (P,. Conversely, suppose that (P, ¢ #Z(Q). Then
we can find an element y of (P, such that y¢%Z(Q). We have {y, 92, ...}
=I'(y) = J(y) = NP..

Since I'(y) is compact, there exists an idempotent e such that
eel'(y) = (P, and e¢Q. (For if eeQ, then I'(y) = Q. But y¢#(Q).) Thus

Jo(8—e) o Q. By theorem 2 of [3], p. 677, J,(8—e) is an open prime
ideal of 8. Therefore J,(S—e)> (P,. This implies that e¢(P,,

a contradiction. Thus MNP, < ().

By now, one cun easily see that Theorem 2.4 is an immediate con-
sequence of these two lemmas.
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COROLLARY 1. If |E| < oo, any open ideal of 8 is semi-prime if and
only if it is w-reducible.

COROLLARY 2. Z(Q) ts the smallest semi-prime ideal of S containing
the ideal Q.

COROLLARY 3. Let Q be an open semi-prime ideal of 8. If B is an ideal
of 8 which is mot contained in @, then B conlains an tidempotent e with
Se ¢ Q.

Proof. Let beB—@. Consider the principal ideal J(b) generated
by b. Clearly, J(b) is compact, J(b) «¢ B, J(b) ¢ Q. Now let # be the
collection of all compact ideals {J;};.; with the properties J,= B, J; ¢ Q.
By the same arguments as lemma 8 ([3], p. 676) we prove that there
exists a minimal member J in # with J =« B, J ¢ Q. Now let zeJ —@Q,
and suppose xJx — . Since ¢ is semi-prime, by lemma 2.5 and lemma
2.6, Q = (MP,, where P, are open prime ideals containing Q. As 8§ is

abelian, we have J(2)’ <« xJzr < Q < P, for all a. This implies that
J(z) =« P, for all a. Hence J(x) = (P, =@, a contradiction. So we

assert that zJx ¢ Q. Since zJx = J and J is minimal, we have zJx = J.
Consequently, 2"Jz™ = J for all integers n. Thus zJx = eJe = J with
e? =eel'(x) = J. Since eeJ, we have eSe = Se =« J ¢ Q.

THEOREM 2.7. Let F be a closed ideal of S and let ¥ = {open ideal
G, of 8|1G, > F}. Then F = (\G,,G,e¥ for all a. In other words, F is

weakly reducible if the family ¥ exists.

Proof. Trivially, F < (G,. To prove the converse containment,
we only need to show that for any element x¢F,x¢( \G,. Since F is

closed in 8, it is compact. As § is compact Hausdorff, it is a regular
space and hence there exists an open neighbourhood V containing F
but excluding x. By the compactness of S, we have that J,(V) is an open
ideal of 8. Obviously, F c J4(V). Hence Jy(V)e¥. Clearly, z¢J (V).
This implies that z¢G,.

COROLLARY. If S satisfies the second axiom of countability, then F
18 a Gy-ideal, that is, F' can be expressed as a countable intersection of open
tdeals conlaining F.

This is because compact and T, imply regular, and regular and
second countability imply metrizable and every closed set in any metric
space is G;.

THEOREM 2.8. Let S be an abelian mob (mot mecessarily compact).
If the algebraic radical of an ideal A is mon-prime, then it is strongly
reducible.
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Proof. Since #(A4) is not prime, we can find elements xz,y in §
such that azyeZ(A) but x¢Z(A),y¢#(A). Consider Z(A):J(y) =
= {ze8|2J (y) =« #(A)}. Then Z(A):J(y) is an ideal of 8§ with %£(4)
c Z(A): J(y). We claim that Z(A) # Z(A4) : J (y). In fact since xy e Z(A),
we have that zJ(y) = v ({y}uylS) = {vy}varyS <« #(A). Thus ze2(4):
J(y) but z¢R(A). Now clearly #(4A) < (Z(A)VJ(y))N(2(A):J(y)).
On the other hand, if ¢¢(Z(4)VJ (y)) N(Z(4) : J(y)), then tJ(y) =« #(A).
If t¢2(A), then we must have teJ(y). Hence t?etJ(y) =« #(A). Since
#(A) is semi-prime, we have teZ(A). Hence we have shown that #Z(A4)
= (#(4)UJ (y)) N (#(4) : J (y)) and hence #(A) is strongly reducible.

COROLLARY 1. Let  be an open primary ideal of the compact mob S
with Z(Q) = P. If A is any closed ideal of 8 with A ¢ Q, then Q : A 1is
an open primary ideal of 8 with #(Q : A) = P.

Proof. Since @ is open, @ is closed and hence compact. 4 is also
compact. If veQ: A, then 2ANQ" = @. By the continuity of multipli-
cation and the compactness of A, there exists a neighbourhood V of z
such that VANQ =@. That is VA c Q. Hence zeV < Q : 4, that is,
Q: A is open. By 1.4 (7) and the fact that (@ : 4)A < @, we can obtain
that (i) Q: A cPc Z(Q:A) and (ii) abeQ : A, a¢Q: A imply that
beZ(Q: A). Hence, by 1.4 (7) again, @ : A is an open primary ideal of S
with Z(Q : A) = P.

COROLLARY 2. If @ i3 a compact primary ideal of the compact mob 8
with Z(Q) = P and if A is any ideal ¢ Q, then Q : A is a compact primary
ideal of 8 with Z(Q: A) = P.

In what follows, if the algebraic radical of an ideal 4 is an open
prime ideal, then A is called a P-ideal of S.

PROPOSITION 2.9. The set of all P-ideals of S forms a filter on 8.

This proposition follows immediately by observing that (1) Any
finite intersection of P-ideals of 8 is a P-ideal. (2) Any arbitrary union
of P-ideals of § is still a P-ideal.

Moreover, we remark that this union is a submob of 8§ and is an open
prime ideal of 8.

Now, let ¢ be an idempotent of a compact mob S. We say that an
element x¢S belongs to the idempotent e if e is the unique idempotent
of I'(x) = {w, a2, ...}. Let B = {weS|e,el'(x)}. We shall call it a B-class.
Schwarz [4], p. 119, has proved that any compact abelian mob S can be
written as the union of disjoint B-classes.

THEOREM 2.10. Let A be a P-ideal of S. Then there exists at least one
B-class which meets A but is disjoint from S—R(A).

Proof. We may assume that there exists a B-class B, such that
B,,nA #9O. Let zeB, N A. Then xeA and xeB, . Consider the principal
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ideal J (x) generated by x. Clearly J(x) is compact and {z, 22, ...} < J (o)
c A. Thus I'(x) < J(#). I'(x) has a unique idempotent which must be ¢,
since zeB, . Now, suppose there exists an element yeBaon('S—.%’(A)).
The element y also belongs to the idempotent e, . But, since yeS —Z(4),
and #(A) is prime, we have {y,y?, ...} S §—Z%(4). As #(4) is open,
S8 —2(A) is compact in 8. It follows that {y, y%,...} =I'(y) = S—Z%#(4).
Therefore ¢, <I'(y) = 8—%(A). Therefore, ¢, eI'(y) = S—Z(4). This is
impossible since A and 8§ —#(A) are disjoint. Hence B, N (8 —Z(4)) =09.

COROLLARY. Any P-ideal A contains exactly the same number of
disjoint B-classes as #(A). More precisely, An{{UB,} = U(ANB,) with
B,c P. ¢ ¢

3. Stability of algebraic radicals.

ProprosITION 3.1. If A is a subset of S with #(A) closed, and xeS
18 such .that A = xA, then we have Z#(A) = #(xA). In other words, the
closed algebraic radical of A would not be expanded under any translation.

Proof. By “Swelling lemma” ([2], p. 15), A c xA < A. Hence
R(A) < B(xA) =« #(A). We only need to prove that #(A4)c %Z(4).
Since A < #(A), we have A c #(A) = #(A). Consequently, %#(A)
c Z(#(A)) = #(A). Thus we have obtained that Z(zA) = Z(4).

THEOREM 3.2 (Main theorem). Let A be an open ideal of S. Then A
is radically stable if and only if #(A) does not contain any idempotent lying
outside of A. '

In order to prove this theorem, the following lemma is crucial:

LEMMA 3.3. Let A be any open ideal of S. If B is an ideal which is
not contained in #(A), then B has an tdempotent not in A.

Proof. Since A4 is an ideal of 8, so is #Z(A4). As B¢ #(A), there
exists an element beB such that b¢Z(4). By the same method as theorem
2.10, we prove that there exists an idempotent e? = eel'(b) = J(b) = B.
Suppose on the contrary that eeA. Then K(b) =el'(b) = A, where

K(b) = (N {d*|t = n} ([3], p. 25). Since A is open, we have b"¢ A for some
n=1 .
integer » > 1. Thus be#(A) which is impossible.

Remark. For any compact abelian mob 8 and A a non-empty
open subset of 8, if B is a submob of S such that B ¢ #(A), then B con-
tains an idempotent which is not in #Z(4).

We are now ready to prove Theorem 3.2. As A is an ideal, so are 4
and #Z(A). For the necessity, we suppose that #(4) ¢ #Z(A). Then, by
our lemma, there exists an idempotent 2 = ¢e%Z(4), ¢¢A. But we assume
that such idempotent does not exist. Hence, #(A4) = #(A). As Z(A)
c #(A) always holds, we have #Z(A) = %#(A), that is, A is radically stable.
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For the converse part, we assume that A is radically stable, that is,
R(A) = R(A). Suppose there exists e2 = eeZ(A). Then ee%(4), so
there exists % > 1 such that ¢*cA. Thus ecA and hence, #(A4) contains
no idempotents which are not in A. Our proof is complete.

COROLLARY 1. Let A be any ideal of the mob S such that Z(A) is open
and properly contained in S. Then any ideal of S8 containing %#(A) contains
a compact group which is disjoint from A. Conversely, let G be a compact
group in S such that @ is disjoint from an open ideal A, and suppose that
A contains all the other idempotents of 8. Then Z(A) is an open ideal of S
disjoint from Q.

Proof. By corollary 3 of lemma 2.6, we have eSe & #(4) for some
idempotent e. Now eSe is a compact submob of § with identity e. Con-
sider @, = {geeSe|gg~' = e¢}. This is the maximal subgroup of eSe. It
is known that G, is a compact subgroup of eSe ([2], p. 13). We claim
that e¢#(A). For if ee#(A), then eSe « #(4), a contradiction. Let
us now suppose that G,NZ(A) = O, then there exists ge@, such that
geZ(A). Since Z(A) is an ideal of 8, gg~' = ee#(A), which is impossible.
For the converse part, suppose GNA = @. Since G is a group, ¢g*<G for
all k > 1, where g<G. Hence g*¢ A for all ¥ > 1. This implies that g¢Z(A).
Thus GNnZ(A) = . As G and § are compact, J,(8 —@G) is an open ideal
of 8. Clearly, Z(4) = J,(8—@G). Suppose that J,(8—G) ¢ £2(A). Then
by our lemma 3.3, there exists e? = eeJ (S —G), e¢A. This contradicts
our assumption on A. Hence #(4) = J,(8 —@) and hence #Z(4) is an
open ideal of §.

COROLLARY 2. Let S be an 2-mob. If A is an open ideal of S which

18 mot radically stable and .@V(A) is semi-prime, then Z(A) is closed and
has the form Se with e¢* = e¢Z(A).

Proof. The non-radical stability of A implies that #2(4)< #(4).
By using the same method as lemma 8 in [3], p. 676, and our lemma 3.3,
we can prove that there exists a minimal closed ideal M contained in
Z(A), but not contained in #(A). Moreover, M has the form Se with
e? = e¢#(A). Since S is compact, SeNnZ(A) #0. As 8 is Q, it follows
that #(4) = Se = #(A). Hence #(A) = Se. Since #(A4) is semi-prime,
we have #(%(A)) = #(A4). Thus 4 = #(A) implies that #(4) < #(4).
We have, therefore, #Z(A) = Se with e = e¢A.

COROLLARY 3. Let A be an ideal which is radically stable in S. Then
A 18 a primary ideal if and only if A is a primary ideal.

Proof. We only need to observe that an ideal A is primary if and
only if #(A) is prime.

Here we give two examples to demonstrate that, without radical sta-
bility, the closure of a prime (primary) ideal need not be prime (primary).
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Example 3.3. Let S be the subset of the plane defined by formula
8 = ([0,1]x0)u(1x[—1,1]) (see Fig. 1), where the underlined brackets

denote the intervals, and define a commutative multiplication on 8 by:
(, 0)*(1, v) = (2, 0) for all points xe[a, b], ve[ec, d].
(¢, 0)*(y,0) = (xy, 0) for all points éo, yela, b]. )
(1,z2)*(1,y) = (1,2y) for all points m,yeflu_cf.
1,2)*(1,y) = (1, —ay) for all points z, ye[bd, d].
1,2)*(1,y) = (1,0) if xe[b,d],yve[b,c] and vice versa.
Where xy is the usual product of x and y.

— c=(1,1)

a=(q0)f b=(10)

L d=(1,-1)
Fig. 1

Clearly, [a,b) is a prime ideal of S. Also (1,1)*(1, —1) =(1,0)
e[a, b], but (1-_,T) , (1, —1) are not points in [a, b]. Hence, the closure
of [a, b) is not a prime ideal of 8. T

Example 3.4. Let 8 be the subset of the plane defined by 8 = ([O, 1]x
X(—1,1))u(l x[1, —1]) (see Fig. 2) where the underlined brackets
denote intervals, and define multiplication on § by:

o)er————————— (1)

=(14)
(1,0)
e~}

Y1)

(¢, y)*(u,v) = (vu, yv) for all points (w,y), (¥, v) in the upper
half plane.

(¢, y)*(u,v) = (vu, —yv) for all points (z,y), (#,v) in the lower
half plane.

(¢, y)*(u,v) = (xu, 0) if one of the points lies in the upper half
plane and the other lies in the lower half plane.

3 — Colloquium Mathematicum XXV.1.
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-
Clearly, the rectangle @ = (0,1) X (-4, 4) is a primary ideal of S,
but the closure of @ is not primary.

Remark 1. Every ideal of the usual thread I is a primary ideal.
By a usual thread we mean a semigroup topologically isomorphic to [0, 1]
with its usual real multiplication. Obviously, the minimal ideal, {0},
of I is primary. Any non-minimal ideal of I has the form [0, #) or [0,z]
for a fixed « in (0, 1] by [4], p. 84. To see that [0, ) is primary, suppose
abe[0,2), a¢[0,2). Then 0<ab< 2z, r<a<1l. Hence, 0<b<2/a,
z/a<1l. Thus 0 < b< 1. Since z is fixed, there exists ¥ > 1 such that
b* < x. As [0, #) is radically stable, [0, #] is also a primary ideal of I.

Remark 2. Every ideal of the min-thread I is prime. By a minthread,
we mean a semigroup topologically isomorphic to [0, 1] with multipli-
cation #*y = min(xz, y). This remark is clear.

4. Concluding remarks. The definitions of reducibility and irredu-
cibility of ideals can be generalized as follows: An ideal A4 is said to be
Z-irreducible if A is reducible such that if A = (M) 4,, where 4, are ideals

of 8, then there exists at least one A, such that #Z(4,) = #Z(4). If
R(A,) # Z(A) for all a, then A is said to be #Z-reducible. The following
example shows that Z-reducible ideals exist.

Example 4.1. Let § be the semigroup consisting of four elements
{0, a,b,c} such that a® = a, ¢ = ¢ and all other products are zero.
Clearly, {0}, {0, a}, {0, c} are ideals of 8 with {0} = {0, a}n{0, ¢}. But
Z({0}) = {0, b}, 2({0, a}) = {0, a, b}, 2({0, ¢}) = {0, ¢, b}. Thus {0} is
Z-reducible.

The following facts are easily verified:

(1) Any algebraic radical of an ideal which is open and non-prime
in the compact mob 8§ is #-reducible.

(2) If A is strongly reducible such that #(A4) is a maximal proper
ideal of 8, then A is #-irreducible.

(3) If a primary ideal is strongly reducible, then it is #-irreducible.

It should be pointed out that, in general, a primary ideal @ and
its associated prime ideal #(Q) are topologically unrelated. For instance,
the statement “@Q is compact if and only if #(Q) is compact” is not true.
For @ is compact does not imply #(Q) is compact (cf. Remark 1 in
section 3). Also Z(Q) is compact does not imply @ is compact. For take
8 = [0,1] with the multiplication * defined by z*y = ay, for all »,y
in 8. Then @ = [0, ) is a primary ideal of 8 which is not compact while
2(Q) = [0,1].

Also “Q is connected if and only if #(Q) is connected” is not true.
For take 8 = [0, $]U[1,2]. Define z*y = }ay for all z,y in S. Then
[0, 3] is a primary ideal of 8, #([0, }]) = 8 is disconnected. On the



RADICALS IN MOBS 36

other hand, take 8§ = {(#, ¥)|[0 <2 <1, 0 <y < 1}. Define (», y)*(2', ¥')
= (0,yy’). Let Q@ = {(»,y)lwre{0,1}, 0 <y <1}. Then it can easily be
checked that @ is a primary ideal of S. As £(Q) = S, #(Q) is connected,
however,  itself is disconnected.
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