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1. Preliminaries. Let A4 and C be substructures (i.e., sub-o-algebras)
of the Borel o-algebra B on I= [0, 1]. Denote by A v C the ¢-algebra on
I generated by Au C and put AAC = AN C. We say that C is a com-
plement of A relative to Bif Av C =B and AA C = {0, I}. A relative
complement C of A is said to be minimal if no proper substructure of
C is a complement of A relative to B.

In [6], B.V. Rao raised the following question:

What are those countably generated substructures of B on I which
have complements relative to B? (P 741).

In this note we prove that every countably generated substructure
of B has, in fact, a minimal complement relative to B (theorem 2). For
this purpose, we need the following results:

(a) If A and C are substructures of B such that Av C = B, and
Av C, # B for any proper substructure C, of C, then AA C = {9, I},
and whence C is a minimal complement of A relative to B (see [5],
p- 100-101, or [6], theorem 2).

(b) If A is a substructure of B, then, for any substructure C of B

with A v C = B, there exists a countably generated substructure C,; of
B such that C, < and Av C, =B (see [5], p. 103).

(¢) Let X be a Borel subset of a complete separable metric space and
let By be the Borel s-algebra on X. If 4, and A, are countably generated
substructures of By which have the same atoms, then 4, = A, (see [1],
or (6], p. 69).

2. Main results.

THEOREM 1. Let A and C be 'coufntably generated substructures of B
on I. Then C is a minimal complement of A relative to B if and only if

(i) every atom of C is a partial selector for A (i.e., it is a Borel set
containing at most one point from each atom of A), and
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(ii) O, U Cy i8 not a partial selector for A for any distinct atoms C,
and C, of C.

To prove this theorem, we need the following

Remark 1. If A and C are countably generated substructures of B
on I, then Av C =B if and only if (i) holds.

Proof. As A v C is countably generated, it separates points if and
only if (i) holds. Hence, by (c), (i) is equivalent to Av C = B.

Proof of theorem 1. Let A and C satisfy (i) and (ii). We infer
from remark 1 that Av C = B. By (a) and (b), it is enough to prove
that, for any countably generated substructure C, of C with Av C, = B,
we have C, = C. Suppose C and D are distinet atoms of C. It follows
from (ii), and remark 1 applied to A and C,, that CuD is contained
in no atom of C,. Thus C, and C have the same atoms, so that by (c),
C, =C.

To prove the converse, suppose that C is a minimal complement
of A relative to B. Then, by remark 1, (i) holds. Suppose (ii) does not
hold. Let C and D be distinet atoms of C such that CuD is a partial
selector for A. Denote by C, the o¢-algebra on I generated by
Cn (I —(CuD)). Then C, is a proper substructure of C which is countably
generated. Also, every atom of C, is a partial selector for A. Remark 1
now yields A v C, = B, so that C is not a minimal complement of 4
relative to B, a contradiction.

THEOREM 2. Every countably gemerated substructure A of B on I has
a minimal complement relative to B.

Proof. There are three cases to be considered.
Case 1. A has a cocountable atom A.
In this case A4 has only countably many atoms and all of them,

except for A, are countable. Then we can define a countable family
{@,: n > 1} of disjoint Borel sets such that

UG, =I—4

and each @, is a partial selector for 4. Let {a,: n > 1} be a sequence of
distinct points in 4. Put H, = G,u{a,}. Denote by C the o-algebra
generated by {H,: n >1} and Bn (4 — U {a,}). Clearly, C is countably

n

generated and the atoms of C are {H,: n >1} and {{z}: zed — {a,}}.
n

By theorem 1, C is a minimal complement of A relative to B.

Case 2. All the atoms of A4 are countable.
Then there exists a countable family {G,: » > 1} of disjoint Borel
sets such that

UGn:I
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and each @, is a non-empty partial selector for A. This is a reformulation,
with help of the characteristic function of a sequence of sets, of a theorem
of Lusin (see [2], p. 335). It is easy to choose the G,’s in such a way that,
for distinet @, and @,,, G, UG, is not a partial selector for A. Denote
by C the o-algebra generated by {G,: n >1}. The atoms of C are
{@,: n >1}, whence, by theorem 1, C is a minimal complement of 4
relative to B.

Case 3. 4 has an atom A which is neither countable nor cocountable.
Then 4 and I — A are uncountable Borel sets. Hence there is a Borel
isomorphism g: A—1—A (see [3], § 37, II). Let f: I—1I be defined by

g(x) if zed,

f@ =1, if wel—A.

Then f is Borel measurable. Put C = f~!(B). Clearly, C is countably
generated and all the atoms of C are of the form {x, g(x)}, where ze A.
By theorem 1, C is a minimal complement of A relative to B.

Remark 2. As a matter of fact, any substructure 4 of B, which
has an atom A being neither countable nor cocountable, has a minimal
complement relative to B even if A is not countably generated (see also
[6], theorem 3, for a special case). To see this, define C as in case 3 of the
proof of theorem 2. Let D be the o-algebra generated by Cu{4}. Then
D = B is countably generated and separates points. Hence, by (e¢),
D =B.But D < Av C < B. Hence Av C = B. To get a contradiction,
suppose that there exists a proper substructure C, of C with Av C, = B.
By (b), we can suppose C, to be countably generated. As C, & C, there
exist atoms {x,, g(z,)} and {z,, g(@,)} of C, where x,, x,¢ A and », # x,,
such that {z,, x,, g(2,), g(x)} is contained in an atom of C,. But this
implies that A v C, does not separate =, and z,, so that 4 v C, # B.
Hence, by (a), C is a minimal complement of A relative to B. Thus the
converse of theorem 2 is not true. For example, if A is generated by
[0,1/2) and {{w}: 1/2< <1}, then A is not countably generated but
has a minimal relative complement. We can even construct an A which
is not atomic and yet has a minimal complement relative to B.

Remark 3. If we wished to prove theorem 2 merely for comple-
ments, instead of for minimal complements, the proofs of cases 1 and 2
could be simplified by observing that in these cases there exists a Borel
set D such that D n A is a singleton for every atom A of 4. (In case 2,
the existence of D also follows from a theorem of Novikoff [4], p. 14.)
Then

C ={BeB: B> D or BnD =@}
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is a relative complement of A. However, such a D does not exist for all
countably generated 4 < B. To see this, take an analytic set 4 < I
which is not Borel. Let f: I -1 be Borel measurable and f(I) = 4. Then
A = f~Y(B) is a countably generated substructure of B for which no such
D exists (see [3], § 39, V, theorem 1).

Remark 4. In [6], p. 214, B. V. Rao proved that the countable-
-cocountable structure on I has no complement relative to B. We exhibit
another class of structures which have no complements relative to B.
Let A = I be any non-Borel set. Write

B4 ={BeB: BNnA =0 or B> A}.

To get a contradiction, suppose that B4 has a relative complement C.
We can suppose C to be countably generated. Then, by (b), there exists
a countably generated substructure D of B4 which is a complement of
C relative to B. As D = B4, it follows that D has an atom D 2 A. As
D is a Borel set, D # A. Fix xeD —A. Since {z} is an atom of B = D v C,
we have {x} = D nC for some atom C of C. Hence C "4 = @, 8o that
CeB“. Thus B4AC # {@, I} which is a contradiction. Therefore, B4 has
no complement relative to B.

Remark 5. The problem of characterizing the atomic substructures
of B which have complements relative to B seems interesting. (P 899)

Another interesting question is the following: Does the existence
of a relative complement imply the existence of a minimal relative com-
plement? (P 900)
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