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Filipczak [2] constructed a continuous real-valued function of one
real variable which has a symmetric derivative at no point on the real
line. In fact, this function has the property that at each point its lower
symmetric derivative is — oo and its upper symmetric derivative is -+ oo.
Letting C represent the metric space of all continuous real-valued functions
on [0,1] with the usual metric

o(f,9) = ﬂ?f} {If(®)—g(@)l}, f,geC,

Kostyrko [3] subsequently wused this result to show that the col-
lection of functions in ¢ which have either an upper symmetric deri-
vative less than -+ oo or a lower symmetric derivative greater than — oo
at at least one point in (0,1) is of the first category in C.

The purpose of the present note is to observe that the same results
hold if one examines the approximate symmetric derivative instead
of the ordinary symmetric derivative. It will be shown that the construc-
tion of Filipezak yields a function which has an approximate symmetric
derivative nowhere (Theorem 1). Then, using an approach similar to
that of Kostyrko, it will be verified that the collection of functions in C
which have either an approximate upper symmetric derivative less than
+ oo or an approximate lower symmetric derivative greater than — oo
at at least one point in (0, 1) is of the first category in C (Theorem 2).

Definitions of terms used in this article are as found in [4]. The
notation |G| will be used to denote the Lebesgue measure of a measurable
set G.

We begin by examining the basic function f,, as defined in [2].

LEMMA. Let a and f be any two positive numbers. There exists a con-

tinuous function f,, defined on the real line which satisfies the following
conditions:
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(1)  fap i8 periodic of period Ta.
(2)  |fap(@) < B for all a.

(3)  fas(®@1) —fap(®2)] < (Bla) 1wy — sl for all zy, a,.

(4) For each real number x, there exist closed intervals H = H(x) and
K = K(x) such that

(4a) H < [a/2, 13a/2] and K < [a/2, 13a/2].
(4b) |H| = |K| = a/2.
(4c) If heH, then

fa,ﬁ(w+h)_fa,ﬂ(w_h) < '—ﬂ
2h = 26a
(4d) If keK, then |

Ja,8(@+ k) —fo g(@—k) S B
o2k 26a

Proof. As in [2], we set

pz/a for z€[0, al,
_ _)B(2a—=a)[a for ze[a, 3a],
Jop(®) =Japl@+Tma) =150 4o)la  for we[3a, 4al,
0 for xe[4a, Ta].

Clearly, f,, is continuous and satisfies conditions (1), (2) and (3).
In order to verify that (4) holds, we consider the following four cases:

(5) 0 << 2a,
(6) 2a < 7 < 4a,
(7) 40 < 7 < 6a,
(8) ba <2< Ta.

For the remainder of this proof, let f = f, 5.
Let # be a number satisfying (5). Then we will set

H = H(®) = [5a2—2, 3a—z] and K = K(2) = [4a+a, 9a/2+2].

Then H and K, clearly, satisfy (4a) and (4b). Let heH, and note
that 6ea/2 <2+ h<3a and —3a < o—h < 3af2. Consequently,

f@+h)—f(@—h) <f(90+h) < —B < —ﬂ’
2h 2h 4h 26a
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i. e., (4c) holds. Next, let ke K and note that 4a <z+% < 17a/2 and
—9a/2 < ¢ —k < —4a. Consequently,

fet+k)—fle—k) _ —flz—k _ B S p
2k =7 ek T 4k~ 26a’

i. e., (4d) holds.
Next suppose that = satisfies (6), and then set

H =H(z) =[#—3a/2, x—a] and K = K(z) = [8a—=, 17a/2 —z].

Then (4a) and (4b) are satisfied, and if heH, then 5¢/2 <z +h < Ta
and e <r—h < 3a/2. So

f(@+h)—f(x—h) <—f(w—h)<.—ﬁ< —p
2h = 9% T 4h T 26a’

i. e., (4¢) is satisfied. If ke K, then 8a < z+%k < 17a/2 and —9a2 < x—k
< 0, and whence
f@+k)—fle—k) >f(w-l-k) B B

2k 2k >4k>26a’

i. e., (4d) is satisfied.
In a similar fashion the reader can verify that if x satisfies (7),
we can take

H(x) =[10a—2, 21a/2—2] and K(x) =[z—Tae/2, ©—3a],
and, finally, if « satisfies (8), we can take
H(x) =[x—a, x—af2] and K(x) = [15a/2—2, 8a—z].

This will then complete the proof.

THEOREM 1. There is a continuous function, defined everywhere on the
real line, which has at every point neither a finite nor an infinite approximate
symmetric derivative. More precisely, this funclion has an approvimate
lower symmetric derivative —oo and an approvimate upper symmelric
derivative + oo at every point.

Proof. Let 0 < a < b < 1, where the actual values for ¢ and b will

be fixed later. Then, following the procedure in [2], for each natural
number n, set

(9) fn (w) =fan,bn (w)7
and then
(10) f@) = D ful@).

n=]



132 ’ M. J. EVANS

As indicated in [2], this function is continuous.
Now, let £ be an arbitrary real number and # a natural number.
From the lemma we know there exist closed intervals

H, = H,(z) < [a"/2, 13a" /2]  and K, = K,(z) < [a"/2, 13a"/2]
such that |H,| = |K,| = a"/2,

— —h — n
falo+ W) —fulo—h) _ 1(_b_) for heF,,
2h 26

a
and
Jol@+E) —fo(®—k) 1 b)”
% > 56 \a for keK,.

So, if heH,, then

f@+h) —f@@—h) O ful@+h)—fn(@—h)  fu(@+h)—f,(@—h)
oh =m2={ oh + 2h t

L\ Sn@ W —fu(e—h)
d

2h
m=n+1 !
n-—1
<__~ J—
26 (a) +m2=1 2h i
1 o0
+ 55 [1fm(@+ )+ | fl(z — )]
m=n+41
<—|— — — - ‘
\6(a)+ (a)+a"22b
m=1 m=r+1
_ =1(b\ (bja)—bja 1 2b°*
~ 26 \a bla—1 a" 1-b

< b "(—1 + a 2b
“\a/ \26 ' b—a 1-b]"
If we now fix a = 0.0001L and b = 0.01, we are assured that this

last expression is less than or equal to —10*"~%, Analogous calculations
yield that if keK, = K, (), then

fl@+k)—f(z—k)

1 2n——3.
ok > 10
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To finish the argument, let » be any positive number, and choose
an N so that 10”3 > p. Then, for any n > N, there is an interval
H, = H,(x) such that H, < [a"/2, 13a"/2], |H,| = a"/2, and, for each
heH,,

J@+W —f@=0) _ _ns
2h
and
|H, n [—13a™/2, 13a"[2]| 1
13a" TN
So the set
flz+y)—flz—y)
e TR < )

has the outer upper density at least 1/26 at zero, and whence the ap-
proximate lower symmetric derivative at # is —oo. Analogously, we
conclude that at zero the set

_ fle+y)—fle—y)
{?/ : 2y >p
has the outer upper density at least 1/26 by using the intervals K, , and

whence the approximate upper symmetric derivative at # is + oo. So the
proof is complete.

For notational purposes in the next theorem, we set

J(@+h)—f(x—h)
2h
for feC, and ¢, x—h, 2+ h all in (0, 1).
THEOREM 2. Let M be the collection of all functions feC having the
property that, for every xe(0, 1),

I (z, h) =

limsupapI;(x,h) = o0 and liminfapI,(z,h) = —oo.
A0 A0

Then the set N = C\M 18 of the first category in C.
Proof. Let

N, = {fe0: Jz¢(0,1) such that limsupapl,(z, h) < + oo}
B0
and

N, = {feC: 3x<(0,1) such that liminfapI,(z,h) > — oo}.
B0

Then N = N, u N,. It will then suffice to show that both N, and
N, are of the first category in C. We do this, first, for N,.
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For each feC, 2¢(0,1), and d > 0, let E(f,x,d) = {h: I, (x,h) < d}.
Then, for each n =2, 3, ..., set
58

1 1
Qn = {feC’: Elwe[;, 1——7;] such that |E(f,z,n)n [—Db, b]l>%b‘,

1
whenever b < _ﬁ—}

Note that N, < |J @,. We actually show that | @, is of the first
n=2 n=2

category in C. More precisely, we show that each @, is a closed no-
where dense set in C.

To this end fix an n, and let fe@, (@, denotes the closure of @,).
There is a sequence of functions {fi};_,.,. < @, such that o(f, f)—0.
For each k¥ =1,2,..., there exists an «;e[1/n, 1—1/n] such that

58 1
| B (fr, ®xy n) N [—b, b]| >§6b whenever b < o

We can, clearly, assume that
im z, = zye[1/n,1—-1/n].
k—>o0
Let
E, =N U E(fy, ®,yn).
m=1 k=m
If b<1/n, we have
\Bon [—b, 0]l =lim | U E(fy, %, n) N [—b, b]|

m—oo k=m
58

Next we show that E, < E(f, z,,n). Let heE,. Suppose & > 0.
According to the Arzeli-Ascoli theorem (see, for instance, [1], p. 191),
there exists a 6 > 0 such that |z —x'| < ¢ implies

elh
Ifk(w)—fk(w')|<% for all k¥ = 1,‘2,

Next notice that

’limIfk(%r h) = Ij(zg, h).
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Consequently, we can choose a natural number m > 1 such that
k > m implies

Ly, (%oy B) —Iy(@e, B)| < &/2  and  |op—,| < .

Since heE,, there exists a ¥ > m such that heE(f;, 2, n). So, for
this k, we have I, (v, h)<n, and

[, (2, b) _Ifk(wk’ h)| < | I (o, h) —Ifk(wm h)| + |Ifk(wo; h) _Ifk(wk’ h)|
<ef24¢ef2 =e.

So I (@,, h) < n+¢, and since this holds for each ¢ > 0, we conclude
that I (@,, h) < n, i.e., he E(f, ®,, n). Then E, < E(f, ®,,n), and whence
feQ,, ie., @, is closed.

Next we show that @, is nowhere dense in C. Let p be a polynomial,
e >0, and B(p,e) = {geC: o(g, p) < ¢}. We show that B(p,e)n (C\Q,)
# @. Suppose p satisfies the Lipschitz condition with constant L. Now,
let f represent the function constructed in Theorem 1. Then, as seen in
the proof of that theorem, for each z¢(0, 1), there exists a positive number
b (which depends on ) with b < 1/n such that

' (f, :)n[ b, b]‘ l—i)2b 58b,

26 30
where 7 = 2—”f-”— and |fll = :??f{lf(w)l}

Then p+nfeB(p, ¢), and, for each heE(p +nf, 2,n) N [—b, b], we
have

n > Ip+n!(w’ h) = Ip(.’b‘, h’)+"’I_f(w7 k) > —L-i—nI,(w, h),

i.e., I,(w, h) < (L+m)[n, implying that h belongs to E(f,z, (L+mn)/n) N
N [—b, b]. Consequently, we have

E(p+nf,z,n)n [—b,b] = E(f,ma(L'{'n)/’?)n [—Db,b],

and so
b8

\E(p+nf,#,n)n [—b, b]|<§6b

Hence p :|—17f¢Q,,. So @, is nowhere dense. Thus | @, is of the first
n=2

category in C, implying that N, is also. An analogous reasoning shows
that N, is likewise of the first category in C, and the proof is complete.
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