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1. Introduction. The problems which we consider in the present
paper have been suggested by physics, namely by the classical field
theory. We meet there functionals on the set of submanifolds of a fixed
differentiable manifold M. In the standard canonical formulation states
of the field are Cauchy’s data for the field equations (i.e. submanifolds
of some tensor bundles over space-time). Physical quantities (e.g., energy,
momentum, etc.) are precisely functionals on the space of states. Since
all interactions in physics propagate with finite speed (in view of hyper-
bolic character of field equations), physical quantities are functionals
of local type, i.e., they have the following property: change of value
caused by a local deformation of state does not depend on its shape outside
the domain of deformation (precise difinition is given in section 2). As
1s known, functionals given by integrals of differential forms are of local
type.

The following problem arises: are all functionals of local type given
by integrals? In the present paper this problem is presented in all its
generality. For sufficiently smooth functionals (bélonging to the space &,
whose precise definition is given in section 3) we have been able to show
that the localness of a functional implies possibility of representing it by
integrals of differential forms. Our results can be easily generalized for
submanifolds with boundary, and for smooth functionals of lesser degree
of smoothness (£ y). In the latter case, the form which must be integrated

is defined not in M itself, but in a space enlarged by “higher order deri-
k

vatives”, i.e., in the bundle AT (M) or in one of its jet extensions.
These results lead to the possibility of construction of a local cano-
nical formalism in the field theory. In such formalism physical quantities
are a priori differential forms on multisymplectic manifolds and the
operation of “Poisson bracket” is of finite-dimensional character (cf. the
results of the author and K. Gawedzki which will be published elsewhere).
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The set 2, of submanifolds which we consider here has no differen-
tiable structure. Reasons for it are explained in the Appendix. In order
to avoid this difficulty we introduce an apparently useful notion of the
derivative of a functional along a complete vector field on M. The idea
of such a derivative is evidently based on the deep concept of Slebodziniski
from 1931 (cf. [4]), called by him the Lie derivative. It seems natural to
call the introduced notion Slebodzinski’s derivative.

I would like to thank Prof. K. Maurin for his lively interest in

this work and constructive criticism. I am also much indebted to Dr.
K. Gawedzki and Dr. T. Balaban for very fruitfull discussions.

2. Functionals of local type. All constructions which we will make
in this paper will be situated in a fixed n-dimensional, contractible,
denumerable at infinity, simply connected at infinity, differentiable ma-
nifold M of C* class. We will be concerned with the family £, of all k-
-dimensional smooth submanifolds of M, which are without boundary,
oriented, well imbedded and closed in M.

By smoothness we always mean that of C* class. For a given Q¢#,,
a continuous homotopy

Qx[0,112(x,t) > H(x,t)e M, H(x,0) ==z,

such that Q, = {H (z, t): ve 2} belongs to #; for all t<[0, 1] will be called
a regular homotopy of 2. We will use the following notation: H(2): = Q,.

Definition. By the support of a homotopy H we mean the set
suppH: = {xeQ2: H(x,t) # x for some te[0, 1]},

where the upper bar denotes the closure of the set.

Definition. A functional F on £, is said to be of local type if, for
any regular homotopies H, and H, such that suppH, nsuppH, = @,
the following equality holds:

(1) F(H,(H,(Q)))—F(H,(Q)) = F(H,(2))-F(Q).

One could say that change of value of F caused by a local deforma-
tion H, does not depend on the shape of 2 outside the domain of this de-
formation.

In the field theory in physics we often meet the Bogoliubov con-
dition

0 é

(2) 59(@) 32() F =0 for z #y.

As will be shown, a precise mathematical meaning can be given to
this condition and it is equivalent to (1) for some class of functionals.
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Examples.

1° Let w be a continuous differential k-form on M. If support of w
is compact, then

F(Q):=[o

is of local type, because both sides of (1) are equal to

w— [ o
H(supp Hy) supp H;

independently of H,.

2° Let M be a Riemannian manifold. It is easy to see that the length
of a curve, the area of a 2-dimensional surface, etc., are of local type.
(Of course, such functionals are defined only on the set of compact sub-
manifolds.) ’

3. Smooth functionals on #,. If we want to formulate conditions
similar to the Bogoliubov condition (2), we must define in some way an
operation of differentiation of functionals on #,. If we would consider
only compact submanifolds, the differentiable structure in £, could be
defined, and it was done in [3]. But even such a structure is not useful
for our purposes (cf. Appendix).

However, smoothness of functionals can be defined in the following
way. .

Let us denote by X the set of all complete, smooth vector fields on M.
Take XeX. The field X generates the group of diffeomorphisms H; :
M — M,teR.

We use the notation X (Q): = HX(Q) (the image of 2 by H;y) and
often, for convenience, we write Q(X): = X ().

For any 2¢%, we have a mapping

X > Q(X)e2,.

These mappings can be used to carry some structures from X to #,,
e.g., a topology.

Definition. By the topology of compact convergence of all derivatives
in #, we mean the topology induced by the family of mappings
{X - (X )}mgk provided X is equipped with the topology of compact
convergence of all derivatives.

The last expression means that we take in X the family of seminorms

| X5, (xy, 09)...(5, 09 = SUP SUp sup sup ID?i)X{i)(x)ly

lal<N i< 1<jsn x<0y
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where a = (a;y ..., @,), la| = a;+...+ a,, D* is the Schwartz symbol

alalf
0 (40531 . . O (ayy)n

Dyf =

(#%;, O;) is a coordinate chart in M which can be extended onto some neigh-
bourhood of O, O; is pre-compact, and Xi; and i, are coordinates
taken in the coordinate chart (x;, O;).

Since mappings X — Q(X) are not injections, they cannot be treated
as “coordinate charts” in £, and so a differentiable structure cannot
be carried from X to #,. But we take the following

Definition. Let be given a field XX, a submanifold 2¢2,, and
a functional F defined on 2. By the Slebodziniski derivative of F along X
we mean (if it does exist) '

V. F(Q): _hml(F(Q(tX) —F(2)).

We say that F is of C* class on 2, if VxF(£) does exist for all Q¢2,
and X X, and if it is linear and partially continuous in variable X and
partially continuous in variable £.

By linearity we mean the property

(X,,eas, aieR,ZaiXieZ{) > Vyoux, F(2) = Y a,V5,F ()

(the space X is not a vector space).
The following lemma is evidently true:

LeEMMA 1. If for each xe$2 we have X (x)eT,(L2) (the field X is tangent
to Q), then VxF(2) = 0.

For a fixed XeX expression VyxF(£2) defines a functional on 2,.
So, we can define the following “iterated” Slebodziriski’s derivatives:

(3) Vi, oo Vi, F(Q): = Vg (Vx, ... (Vi F(R)...)).
A functional F is said to be smooth if each of its iterated Slebodzin-

ski’s derivatives do exist and is of C! class.

Remark. Iterated Slebodzinski’s derivatives are not in any sense
n-th derivatives of a function on any “model” vector space. They have
not, therefore, the property of symmetry. Nevertheless, the following
lemma is true:

LeMMmA 2. If [X,, X,] =0, then Vx Vy F(Q) = Vx, Vx, F(9Q).

Proof. If X, and X, commute, then so do the generated by them
groups of diffeomorphisms. We define

R (1, 1g) > g(ty, 1) = P(1, X, (1, X,(9)))
= F(t,X,(t, X,(9))).
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To complete the proof we note that

2 62

Vx (0,0) =75—;
2V

Vv. F(Q) =—
Vx, B9 =550

9(0,0) = Vx, Vx F(Q).

COROLLARY. Let be given an iterated Slebodzinski derivative with
respect to the sequence (X,, ..., X,). If any two neighbouring fields in this
sequence commute, then they can be exchanged one for another.

Definition. A functional F is said to be of C' class with respect
to 0-norms if its Slebodzinski’s derivative is a continuous, linear operator
on the space X equipped with the topology of compact convergence (with-
out derivatives), and if, for any fixed X X, it is continuous with respect
to Q. :

Our terminology derives from the fact that the topology in X of
compact convergence without derivatives is given by norms | |y, ., 0,)... (x, 05)
(N = 0).

Of course, Vi F(£) can be extended to a linear continuous form on
the space of all smooth vector fields or (if # is C* with respect to 0-norms)
to the space of all continuous vector fields.

We will use the following useful criterion:

ProposiTiON. If F is of C! class with respect to 0-norms, them, for
any X;eX, where ¢ =1, ..., s, the distribution

(CR (M) (fry ey fs) = Vixps .15 x, F(R2)

of s variables is a finite measure (i.e., it is continuous with respect to the
norm | fli = sup|f(x)]), depending continuously on £2.

Here and later on by a measure we mean not only a positive but
an arbitrary regular distribution.

Proof. The uniform convergence fP — f; for p — oo implies the
almost uniform convergence of ffX,+...+fPX,.

It is not very difficult to show that the inverse is also true but we
will not use this fact.

Definition. F is smooth with respect to 0-norms if every its iterated
Slebodzinski’s derivative is of C!' class with respect to 0-norms.

The set of all functionals smooth with respect to 0-norms will be
denoted by ¥,(Z,) or, simply, by &,.

Similarly, if we take in X the topology of compact convergence of
derivatives of degree p << N, we can define spaces Fyn(Z;) = &Fn- Ele-
ments of §y are said to be smooth with respect to N-th norms.

In the present paper we will consider only the space §,. A genera-
lization of our results to the case of §y is not very difficult.
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Examples.
1° Let be given

F(Q) = [o,

Q2

where o is a smooth k-form in M whose support is compact. It can be
easily shown (cf. [2]) that

(4) ViF(Q) = [doLX.

If we replace o by w,,;: = dw,LX,, , (where 0, =0, p =1,2...),
we see that all iterated Slebodziniski’s derivatives are given by integrals
similar to (4). Hence Feg,.

2° It is easy to see that the length of a curve and the area of a 2-di-
mensional surface are not smooth (even continuous) with respect to
0-norms, and one can easily show that they are smooth with respect to
1-norms.

4. Representation theorem. The space &, is clearly not connected
{cf. [3]). Its arcwise connected components are composed of submanifolds
which can be joined one to another by a homotopy.

THEOREM. Let FeF,(Z:) be a functional of local type.

1° If k < n—1, then, for every arcwise connected component #; c 2,
there exist a number ceR and a smooth differential k-form o on M such
that, for every Qe we have

F(Q) =¢+ [o.

Q2

2° If P, consists of non-compact submanifolds, then supp w is compact.
3° If k =n—1 and &P, consists of compact submanifolds, then the
thesis of 1° also holds true.

4° If & =n—1 and &P, consists of mon-compact submanifolds, then
there exists a smooth n-form a on M such that suppa is compact and

F(2)-F(2)= [ aq,

['019 02]

where by [2,, 2,] we denote the n-dimensional volume (possibly degenerated)
between 2, and ,, oriented by the parametrisation H=>(x,t) for any
homotopy HX conmecting 2, with £,.

An idea of the proof may be sketched as follows.

Let be given Q2¢2,, XeX and a (k +1)-dimensional volume & “swept”
by Q, = Q(tX). If w is a k-form, then dw gives a smooth measure on @
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which will be denoted by ue. Now, if 2!, Q*c¢ 2, liein O (e.g., Q' = Q(f*X),
f*eC®(M)), then, for the functional
F(Q) =c+ [0,
2
we have
(5) FY-F() = [ o= [ do=pe((2" 2
al-q? (21, 9%¢
(here we use the fact that 9Q' =002% =0, so d[Q', Q*], = 2'— Q).
If we knew all measures uo, we would have the form dw. So, formula (5)
will be the basis of our proof. It gives a possibility of defining measures ¢
by F. Moreover, formula (5) states that dw is uniquely determined by F.

Of course, w is not uniquely determined. For instance, the form o -+ dA
is also good if (k¥ —1)-form A has compact support.

5. Proof of the representation theorem. The following lemmas will
be needed in the proof:

LeEMMA 3. Let &, be a component of #, and let y = M be a k-dimen-
sional, oriented, smooth submanifold imbedded in M. Then, for every xey,
there exist a neighbourhood O, of z in M and 2, P} suchthaty N0, = 2,00,
and orientations of both pieces are identical.

Let F be of C! class with respect to 0-norms. For every X eX
and QeZ;, the measure which gives a mapping f — V,xF(2) will be
denoted by VxF(£2,x)dz. Then

VixF(2) = [f(@)VxF (2, z)do

and
VxF(Q) = [ VxF(Q, z)da.
2

LEMMA 4. If Fe§, is of local type, then, for every arcwise commected
component P, = P, consisting of mnon-compact submanifolds, there exists
a compact set K < M such that all measures Vx F (2, x)dx vanish beyond K.

COROLLARY. If assertions of lemma 4 are satisfied, then Q2,n K =
QR,NK implies F(RQ,) = F(2,) for any Q,, 2,¢P,.

LemMA 5. If X,,..., X,eX and F is smooth, then

(O3 (M))*>(fuy --es ) = Viyx, ++- Vi x, F(R)
18 a distribution of s variables, whose support is contained in Q2 <« M°.

LEMMA 6. A smooth functional F is of local type if and only if, for
every X, X,eX and QeP,, the support of the distribution

(f1s f2) — Vflxl szsz(Q)
18 contained in the diagonal of QX Q, i.e., in {(x,2): 2e0Q} = QX Q.
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Lemma 6 gives the precise mathematical meanning to the Bogo-
liubov condition (2).

LeEMMA 7. If F is smooth, QeP; and X,, X,eX, then X, |2 = X,| 2
tmplies Vy F(2) = Vx, F(Q).

The following Lemma is fundamental in our proof:

LEMMA 8. Let XeX and Fe§, be such that all measures VyF (2, y)dy
have compact supports (it means that either Q is compact or all these
measures vanish beyond some compact K < M). Let X be transversal to 2
(i.e., X(2)¢T,(L2)).

If F is of local type, then

d
Vox VixF(Q) = [ p(@)— {BX,(Vix F (2, 7) A0} oy

where 2, = Q(tX) and HX (u) is a measure carried from Q,t0 Q,, . by HE.

LEMMA 9. Let u be any measure on an m-manifold ©. If for any X X
the Lie derivative (8x)°u 18 also a measure, then u is a smooth differential
m-form on ©.

Now we are ready to pass to the proof of the theorem. Take any
k+1

simple (k+1)-vector we \;T, (M) and choose a coordinate chart in
a neighbourhood of z, such that w is represented as

0 0
= Fyet A oo A W;T.

Using lemma 3, we can also choose Q¢2, such that, for some neigh-
bourhood O =« M of z,, the manifold

k+1 k42 n

{@y ...,x™): 2™ =" =... =" =0}

(taken with its natural orientation induced by coordinates (zY, ..., z*))
coincides with 2. Let us take any field X for which X |0 = 9/dz**' (such
an X obviously exists). Define also (k¥ +1)-dimensional oriented manifold

O ={@...,": " =...=a" =0} N O

with the orientation given by (a, ..., 2*™?).

Now we will try to define the measure x on @. Suppose f is a smooth
function on @, whose support is compact. Choose any weC®(M) such
that |0 = f. Set

(6) p(f): = [ @V, F(Q) = [ dt [y(2) VxF (2, )da,
9

where 2, = Q(tX).
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Boundaries of the integral f dt are chosen in a way to cover wholé
support of f.

Since left-hand side of (6) does not depend on a particular choice
of y (lemma 7), we simply write

w(f) =fdtv,XF(.o,).

Now we must show that u defined in this way does not depend on
a particular choice of a coordinate chart (z', ..., 2**!) in ©. Assume that
the congruence £, and the field X are deformed by a homotopy HY
(e€[0,1]), where Y eX. Denote

Q =HY(Q), X*'=HI(X), and u(f): = [dtV;xF(2).

Now,

d

(7) —%”e

1
(f)(0) = lim—fdt(V,XeF(Qj)—V,XF(Q,))
e—>0 €
= [ artim (9,0 P(9) — ¥, P (@)} +
e—>0 €

!
+ [ d@tlim — {V,x F(2) —V,x F(2)}.

e—0 €
The first term of (7) is equal to
(8) 11._13 Ve_lj(X"—X)F('Q:) = Vflime_l(X‘—X)F('Qt)'

The last equality can be explained as follows. The mapping
(9) XXR>(Z,¢) > V,F(2)eR

is partially continuous in both variables and linear in the first variable.
But the value of V,F(Q;) does not depend on the value of Z beyond
some compact set D (D is either a neighbourhood of K from lemma 4
or a neighbourhood of the set 2 =« M if Q is compact). So, we can project
this mapping to the quotient space X’ = X/(fields vanishing on D).

Since X’ is a Fréchet space, we can use the generalized Mazur-Orlicz
theorem (cf. [1]) which states that (9) is continuous. This fact implies (8).
But

lim—l(X‘—X) =[Y, X].
e—0 €
Since the field Y is tangent to 6, it can be decomposed into two
components: the first — tangent to the congruence 2, and the second —
parallel to X, '
Y(2) = Y(2) +o(2) X(r).
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Therefore
de
[Y, X] =[Y, X]+ [¢X, X] =[X,, X]+WX
But the field Z = [Y, , X] is tangent to the congruence 2, (Y, is

tangent and X leaves the congruence invariant), and so V,;F(£,) = 0.
Finally, the first term of (7) is equal to

fdtv{dtp/dt)fXF( 2,).

Let us compute the second term of (7). We have

hm_{VfXF (20)—VixF(2)} = Vy Vix F ()

e—0 €
= Vo, VixF () +Vox Vix F () = Vox V,x F(£).

Now we approach the most important part of the proof. Using
lemma 8, we can write

d
(10) Vox VixF () = f‘P(w)-—d—T‘ lHi(r(
2

For any z = (z',..., 2% 2**') let us denote p = (a',...,2") and

t = a*+1, So, we write x = (p,t) and # = H{(p).
Defining a family of measures on £ by

v (p)dp = v(p,t)dp: = HX{V,x F (82, x)dx},
we can write

d
(11) [tV anaxF(2) = [at [ @) VxF (9, 2)do
Q2

de
=fdtfdp—dt (2, )9(p, 1).
Similarly, using (10),

d
(12) [atvxvx P @) = [at oo, 0,1

(expression dv(p,t)/dt is to be understood in the sense of the theory of
distributions).
If we gather (11) and (12), we finally obtain

—d—u,(f)w) —ff( vho )dtdp —o0.
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Similarly, we can obtain d[u,(f)(g,)]/de = 0 for every ¢,. In order
to see this, one must put ¢, instead of 0 and ¢ = ¢—¢, instead of & So,
u, = pu for every e.

But since (locally) every two congruences {£,} lying in the same
component #; can be connected by a homotopy HY, u is well defined
and does not depend on a particular choice of coordinates in 6.

Now we will show that x4 is a smooth (k—+1)-form on ©®. We have

0 d
) (ggmrn) ) = [@ J 0 V(5 G 1)

the last equality being again a consequence of lemma 8. But Feg,, and
so (13) implies that du/0x**' is a measure. By iteration we obtain

63
(5zmm ) ) = [ @Vt @),

thus again a measure. But coordinate chart can be arbitrarily chosen,
and so we can conclude that the Lie derivative (£x)°u is a measure for
every XeX,s =1,2... Using lemma 9, we conclude that u is a smooth
differential (¥ +1)-form on &. It will be denoted by ae. Let us compute
how it acts on our (k-+1)-vector w. In order to do this, we take a d-se-
quence of functions ¢ e Cy° (R) (the space of smooth functions with compact
supports), [o,(t)dt = 1 for every s, suppg, — {0}. Using any coordinate
chart on @ in a neighbourhood of z,, we can define

k
wil): = [ | gula’ =),
where z are coordinates of x,. Then
(14)  (aolm), w) =lim [g,()dt J 9@ VxF (2, 0)dt
= ilm V%XF(Q‘).

These considerations prove also that VyF(2,x)dr is a smooth
k-form on £ and that

[F@) V2P (Q, 0)dz = [ agLfX.

Finally,
(15) ViF(Q,2)dz = agLX.
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k+1
Similar construction can be made for every we A\,T(M) at every

point x,e M. But we must prove that the result {ag(w,), w) does not

depend on a particular choice of @, i.e., that it gives a function on the
k41

space A T (M).

Let 6, and @, have the same tangent element w at z,. Assume first
that @, and @, are tangent to each other along a whole k-dimensional
submanifold which we denote by 2. In such a case we can choose X,, X,eX
such that @, and @, are “swept” by Q2(tX,) and 2({X,) (recall that all
these considerations have only local character). Moreover, X, and X,
can be chosen in such a manner that they will be tangent to one another
on £, i.e., X,|2 = X,| Q. Using lemma 7 and formula (15), we see that

<091LX17 wy = <a92LX2, w),
where w is a k-vector tangent to £ at x, such that

WA X, (@) = WA Xy(x) = w.
Hence
(16) Cag, (o), w) = ag,(®o), w).

In the general case, if ® and @’ are tangent one to another only
at x,, we can build a sequence of manifolds ©,,6,,..., 0,.,, where
O, =0 and O, , = O, such that every two neighbouring manifolds
0; and 0,,, are tangent along a whole k-dimensional submanifold passing
by z,. If we use (16) k41 times, we obtain ag(2,) = ag (2,). S0, we can
drop the index @ in ay and write simply a.

Our a is now a function on the bundle of simple k-vectors in M.

Its linearity is an immediate consequence of (14) or (15) and of linearity
k+1

of Slebodziniski’s derivative. Thus, a can be extended to the whole A T (M)
as a differential (k¥ +1)-form.
Finally,

[alX = VxF(2), alX = VyF(2,7)da.

Q2

Now we can use the formula (4), where we replace » by aLX and F
by VxF. We obtain

Vir VxF(Q) = [d(aL X)LFY = [ £ (al X)

Q2

and, similarly, for all iterated Slebodzifiski’s derivatives.
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Taking any coordinate chart (x, O) and
Q**, ..., 2" = {(@, ..., 2"): "' = const, ..., a® = const},
we can build a measure in M NO,

A=andz* A ... Ad2" = q

.....

where
a = Zail....,ik+ld$i1 A ooo A Aot
Denote X; = 9/0a",
M) =[aHnnde” [ Xy f
a@k+1,..., 2"

=fdw"+1 Ao A dd" Vg (F(Q(a", ..., ")

(the last formula proves that A is indeed a measure). For ¢ > k+1 we
have

(a(;*‘ A)(f) = [ A ndr [ f(@) £, (o

a@k+1,.. 27

,,,,,

=fda:"+1 A oo A d2” f £in(a LXk+1)

= [dd* ' A L. A A"V Vx,  F (2", ..., z)).

Thus 04/02° is again a measure. For i < k we deduce the same result
from the fact that a|@ is smooth for every €. Iterating this procedure,
we see (lemma 9) that A is a smooth differential n-form. It means that
aj,...,k+1 18 Smooth. Similarly, we can prove that every a; . ir4, 1S smooth.

It means that a is smooth (we have shown previously that a|@ is
smooth for every ).

Now let be given two manifolds 2, Q,¢%, connected by the field
XeX. We have

F(2,)—F(Q) =fdthF(Q,)=fdtfaLX = [ q
w° 2 (2, 91x

where by [, 2,]x we denote the (k-+1)-dimensional volume (possibly
degenerated) “swept” by the congruence £,,t¢[0, 1].
Hence we have proved part 4° of our theorem.

20 — Colloquium Mathematicum XXVI
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To show the rest we must prove that da = 0. If we knew this, then,
taking a k-form for which dw = a (M is contractible), we would have

dw = f w=fw—fw,
4 Q

because of 02 = 92, = 0. Choosing any fixed £, and putting
c: =F(Q,)— fw,
2
we would have, in the case of compact submanifolds,
F(Q) =c¢+ [o.
Q

Thus we would have proved parts 1° and 3°. In the non-compact
case this construction can also be made provided we can choose w whose
support is compact. But suppa is compact and k41 < n, so in a con-
tractible and simply connected at infinity manifold M one can choose
a k-form o with a compact support.

The only thing which remains to prove is the equality da = 0. Take
any coordinate chart (x, O) in a neighbourhood of x,. Let £ be such that

QN0 ={...a"): " = ... =" = 0}.
Let the field X be given in O by the formula
0,...,0) if (2" +... 4+ (zF)? > 7%
0,...,0,Vii— (2" —...— (¢®% 0, ...,0) elsewhere,

X(z) =

where the only non-vanishing component of X is X**'.
Let Y be given by a similar formula, but the only non-vanishing
component let be Y**% Take the third field

Z(z) = (0,...,0, =" 210, ..., 0)

k times
and the (k4 2)-sphere
C ={aY...,2": ()P +...+ (@ <P 2" = ... =" = 0}.
ke
2(Y)

A
R(x) 2x)
\ k17

2(Y)

Fig. 1

All this may be projected parallely to  into the plane (z**!, 2**?)
(see Fig. 1).
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We see that
fa = f a-+ f a+ f a -+ f a.
o [2(X),2Y)]z [(Y), 2(— X))z [2(-X),Q(-Y))z [2(-Y), 2(X))z

If fields X and Y were smooth, we could write

[a = P(Q(Y))—F(2(X)+F(Q(~X))—F(2(T)) +

+F(Q(—Y))—F(Q(—X)+F(2(X)—F(Q(-Y)) = 0.

But fields X and Y can be approximated by smooth fields. Thus
the formula

still holds. Hence

for every “sphere” C. It means that da = 0.

6. Proofs of lemmas.

Proof of lemma 3. Let us take any Qe%,. If x¢Q, then there
exists a field X eX such that xeQ2, = 2(X). In order to show this, join
point x with an arbitrary z,¢£2 by a smooth curve. Let #; be the last
point of this curve lying on Q. Take a smooth vector field X on this curve

such that HX(x,) = x. The field X can be extended to a complete field
X eX. We see that xe 2(X). _

Now let (%, 0,) be a coordinate chart in a neighbourhood of « such
that 2,0, and y N0, are both k-dimensional discs. But there exists
a homotopy which joins them, and which does not move the point .
Let Y be a field in O, realizing this homotopy. Choose a smooth func-
tion g on M, whose support lies in 0, and which is equal to unity in some
neighbouﬂ}ood O of . Then 2.: = 2,(9Y) has the needed property.

Proof of lemma 4. We have M = | J K,, K; compact. Let K,
=1

be compact such that K, c K, and M —Kl is connected. If K, has not
the demanded property, then take any Qe¢#;, X,eX and z,¢K, such
that Vg F(Q,x,)dr # 0. So, we can choose a field X, whose support
1s compact and such that Vx, F(Q) = 1. Take K, such that intk, >

> {K, U suppX,} and that M —K, is connected. If K, has not the de-
manded property, then take x,¢K,, X,eX and 0,¢#, such that
Vi, F (82, ;) # 0. Using the method given in the proof of lemma 3,
we can choose the field Y,eX such that suppY, ¢ M —K, is compact
and that Q(Y,) = 2, in a neighbourhood of x,. So, we can choose a field
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X,eX whose compact support belongs to M —ﬁz and for which
Vx, F( Yg)) = 1. Similarly, we can build by induction the sequence

of compact K (su(,h that lntK > K,), X;, Y, (whose compact supports

belong to M —K, and to intK,,,) such that Vx, F(Q(Y)) =1.
Let us define two complete vector fields by

ijX.- and Yij,-.
i=1 i=1

Both sums exist, because all summands have disjoint supports.
Denote 2° = Q(Y). Since F is of local type, we have

Vi, F(Q°) = VXiF(.Q(Yi) = 1.
Thus VyF(£2° does not exist (VyF (L2, z)dr is not finite) which
contradicts our assertions.

Lemma 5 is obvious. If any f; has a support beyond £, then diffeo-
morphisms {H*i} do not move 2 and the Slebodziriski derivative vanishes.

Proof of lemma 6. If suppf, nsuppf, = @, then suppH1*1n
Nnsupp H>*2 = @ "and H"*1, H?*2 commute. We define

9ty ta): = FHIS(HE(Q))) = FHES(HE(Q).
But F is of local type, and so
(t1, 1) —@(0, 1) = @(t;, 0)—¢(0, 0),

which implies
62
Vflxl szsz(-Q) = at, 01, ¢(0,0) = 0.

The inverse is- obvious.

Proof of lemma 7. It suffices to prove that Vx#(£2) = 0 when
X |2 = 0. But it is an immediate consequence of lemma 1.

Proof of lemma 8. Using partition of unity, we can reduce our
problem to the case where K is contained in a domain of a coordinate
chart (%, 0). Let (x, O) be such that (z, ..., 2*) gives a coordinate chart
on Q. Assume at first that ¢ and f are constant on integral curves of the
field X. In this case [pX,fX] =0 and

8(@,f): = Vox Vix F(R) = V,;x V,x F(RQ)

is a bilinear, partially continuous functional on the space C(Q N D)X
X C(£2 NnD), where D is an open, pre-compact neighbourhood of K. We
divide the whole O into cubes

A = {(@, ..., 2%): ea’ < 2f < e(a’ 1)},
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where a = (al, ..., a¥) is 2 multi-index (o’ are integers). Take any sequence
fieC(2nD),0<f;<1, such that

fi=1 4t pointwise,
where

1, zed,
Lal®s =14 44
, .

If S(p, ) is a measure on 2 ND, then using the Lebesgue theorem
we have, for any ¢peC(2 ND),

8@, £) > 8(ps 10)-

This means that S(-, f;) = S(-, 14¢) in the sense of the simple topo-

logy in C(2nD). Using the Banach-Steinhaus theorem, we see that
S(-,14¢) is again an element of C(2ND)’, so it is a Borel-measure on

2nNnD. We will show that, for any ¢C (L2 NnD),
S(1A8,¢-1Az) =0 for a # 8.
It is not very difficult to see that there exist sequences f;, g;e C(2 N D),
whose values lie in [0, 1], which satisfy
fi—>1AE a.vnd gj_>1Ae’

I
and for which at least one of two statements

(17) suppf;nsuppg; =9 for i <j
or
(18) suppf; Nsuppg; =90 for i>j

is true (e.g., if B = (al, ..., a* 7} a*+1, a®*, ..., ¢*), then (17) is true).
If, e.g., (17) is true, then, using twice the Lebesque theorem and
lemma 6, we obtain
0 =8(fi,0:9) >8(fiyp-1ye) > 8(1ye, p1ye).
i<j j—>00 B iseo a B
If (18) is true, we must change the order of computing the limits.
Denote now

at: = (ealy ..., ea")eQ2ND, ¢ = Z«p(mi)-lA;.

Of course, ¢, — ¢ pointwise. Thus, using again the Lebesgue theorem,
&0

we obtain
S(p,f) = lmS(,, ) =lim >’ 8L, p(ad)-f)-

e—>0 &
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But
S(lA;a ‘P(wZ)'f) = S(1A§’¢(x:)21A§'f)
B

=D S(Lae, p(@l) Luef) = S(Lae, p(@2) 1ae-f)
8

= D' 8(Leey 9 (@i 1usf) = S(Las, 90°f).-
B

Therefore

S, f) —hmZS(lAe,«ps ) =Im 8, 9.-f) = 801, 9.

e—0

It means that

d
Vox Vix F(Q) = Vx Vox F(Q2) = at f‘P(w) V,XF(Q,,w)dw‘=
2

because ¢ is constant on integral curves of X.

In the general case, denote by f and ¢ the functions which coincide
with f and ¢ on 2 N D and which are constant on integral curves of X.
Using lemma 7, we have

1 .

1 - - -
= llm im —- {V,XF(.Q(tq)X)) —V;XF(.Q(t(pX)) +V;XF(Q(t<pX)) —V,XF(.Q)}
= VoxixF(Q)+Vx V;ix F(Q).
On the other hand,

d
f‘P(‘”)—dt‘ {Hft(VfXF(-QH x)dz)}li=o
2
d [.
= 4 | P DVxF (2, papley

d .~
- [ )5 ®: O V(@ p)ap+ - [ 0T V(20 2)plcs
2 '
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Proof of lemma 9. Taking covering {0;} of M by domains of
coordinate charts (x;, 0;) and a subordinated partition of unity {¢,},
we can reduce our problem to the problem of smoothness of measures
Ui = pr@;. Let us define v,: = x,(u-¢;). Now », is a finite measure in R™
and the only thing which remains to prove is that all », are smooth m-
-forms.

Let us take the Fourier transform »,. Because (£x)° v, is a finite
measure for every constant field X in R™, il(p)-(Za,-p‘)“’ is borned for
every linear form Za,-pi on R™. It means that »,(p)-p°® is borned for every
polynomial p® in R™. The same arguments can be used for the finite
measure v,(z)-z” (for any polynomial z°), and we infer that p°D*»,(p)
is borned. It means that »,¢% (RE™) (the Schwartz space) and also »,¢% (R™).
The last relation implies that », is smooth.

APPENDIX

ON 4 POSSIBILITY OF INTRODUCING 4 DIFFERENTIABLE STRUCTURE IN %,

The topology of compact convergence plays a fundamental role in
the present paper. With its help we have defined smoothness of functionals
with respect to 0-norms. As it was shown in [3], this topology in £, cannot
be equipped with a differentiable structure. Also topologies of uniform
convergence of all derivatives up to N-th order have no differentiable
structure. It is so, because differential operators are not continuous in
the space C¥ for N < co. But they become continuous on ¢ ° and this
fact has been used in [3] for defining a differentiable structure on Z,
equipped with the topology of uniform convergence of all derivatives.

These reasons for resignation of a differentiable structure in £, may
be called local. However, global causes are equally serious. They are
connected with the fact that we want to consider also non-compact sub-
manifolds. With the lack of & uniform structure in M the only natural
topology is the topology of compact convergence. But in that case the

Ary
y'
\e

Fig. 2

method of parametrizing submanifolds lying in a neighbourhood of 0
by sections of a vector bundle deludes. We will demonstrate this on the
following example:
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Take M = R? Q = {(z, 0)eR2: xeR}. Let 2, as drawn on Fig. 2,
be a smooth 1-dimensional submanifold.

If we take Q,: = {(x,y): (x—s, y)e2,}, then, obviously, every £,
can be treated as a section of the vector bundle whose fibres are parallel
to the y-axis. Of course, 2, - 2 almost uniformly with all derivatives.
But if we treat M as a bundle with fibres parallel to y’'-axis, then none
of these submanifolds is a section. So, if we want to number submani-
folds from £, by sections of vector bundles, such “coordinate charts”
would not cover entire neighbourhoods of points in Z,.
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