COLLOQUIUM MATHEMATICUM

VOL. LVI 1988 FASC. 2

THREE COUNTABLE CONNECTED SPACES

BY
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In [7] Cvid poses the question whether there exists a countable connect-
ed Hausdorff space such that the intersection of every two of its connected
subsets is connected. A connected space having this property is called
strongly unicoherent.

We shall construct three countable connected spaces with this property.
The first is Hausdorff, the second Urysohn, and the third Urysohn almost
regular. None of them is locally connected. Their construction is based on a
modification of the embedding applied in [11] and on three auxiliary spaces
which ar¢ countable Hausdorff, Urysohn, almost regular, respectively, and
have two points a, b not separated by a continuous real-valued function. The
third space has the additional property that it is regular at the points a, b.

For spaces countable connected or locally connected Hausdorff, Ury-
sohn or almost regular or ones with other properties, see [1]-[31].

A topological space T is called

(1) Urysohn if every two points of T have disjoint closed neighbour-
hoods,

(2) almost regular if it has a dense subset at each point of which T is
regular.

Let T be a connected topological space. A point ¢t is called a cut point if
the space T\ |t} is not connected. Thus, if ¢ is a cut point of T, then the
subspace T\ |t} is the union of two mutually separated sets A(t), B(t). (Two
sets A, B are called separated if AnB =@ and A "B = @.) Obviously, if
A(t), B(t) are connected, the separation is unique. Let x, yeT. A cut point ¢
of T is said to separate the points x, y if the above sets A(t), B(t) can be
chosen so that xeA(t) and yeB(t). The set of cut points separating the
points x, y will be denoted by E(x, y). It is clear that if M is a connected
subset of a (connected) space T and x, yeM, then E(x, y) < M. (For these
definitions see [32], p. 41))

1. In the space of real numbers with the usual topology we consider the
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subspace
X=Z"Ulktl/m: keZ*, m=3,4,..},

where Z* is the set of positive integers. We add two more points a, b and we
set S =X U la, b]. For the points a, b a basis of open neighbourhoods are
the sets

B(a) = {V,,(a):{a}u{k—l/m: m=3,4,..;k>n-1}:n=1,2,...4,
B(b) = {V,,(b)= {btuik+1/m: m=3,4, .., k>n-1}:n=1,2,...5.

-y

The space S is Hausdorff with the two points a, b not separated by
disjoint closed neighbourhoods (because V,(a) N V,(b) = {n, n+1,...}), and
hence, for every continuous real-valued function f of S, f(a) = f(b). The
space S is due to Urysohn [30].

Let Z~ be the set of negative integers. In Z~ U S consider each point of
Z~ to be isolated. Obviously, the set

D=Z uilkxl/m: keZ*, m=3,4,..]}

consisting of isolated points of Z~ U S is dense.
Set J =Z~ uS\\{a, b}. The natural linear order < of the set of real
numbers induces a linear order on J. For every two points x, y of J we set

Lix<)=1lzeJ: x<z}, L(<x)=/{zeJ:z<x},
L(x,y]=lzeJ: x <z <y).
Similarly we define the sets L(x <), L(<x), L[x, y), L(x, y) and L[x, y].

DeriniTioN. Two points x, y €J are said to be successive if L(x, y) = ©.

Following the order on J we attach disjoint copies of J (that is, spaces
homeomorphic to J) to every pair of isolated and successive points of J and
we construct the set

L) =Ju U J*,
Aed

where A = |{(d,,d,)eD xD: d, <d,, d,, d, successive!. It should be noted
that to each isolated point of J there are attached two copies of J, to every
successive pair of points there is attached only one copy, and to each zeZ*
no copy is attached.

For every two points x, y of J we set

A(x <) = A =(dy,dy))€A: x < d,j,
A(Sx)=\A=(d,dy)€eA: d, < x},
A(x,y] = A =(d,,dy))eA: x <dy <d, <y].
Similarly we define the sets A(x <), A(<x), A[x, y], A[x, y), and A(x,.y).
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It is obvious that if xeZ*, then A(x <) = A(x <) and A(< x) = A(<x). If
xeZ* and y¢Z*, then A(x, y] = A[x, y], and if x, yeZ*, then A[x, y]
= A(x, y).
Finally, for every point xeJ we set
TL(LxL)=Lx<)u U J4

AeA(xX)

L) =Lsyu U J,

AeA(<x)

T (L(x, y]) = L(x,y]lu U J*
AeA(x,y]
Similarly we define the sets T, (L(x <)), T; (L(< x)), T, (L[x, y]), T; (L[x, y))
and T, (L(x, y))
On the set T,(J) we define the following topology:
On each copy J* the topology remains the same as in J. For every
isolated point ¢t of J a basis of open neighbourhoods of ¢t in T; (J) is the set

B(t) = {0,(t) = it,) U(H.() UG, (): n=1,2,...},

where H,(t), G,(t) are copies of the deleted neighbourhoods of the points q,
b, respectively, attached to r. And for every z€Z™* a basis of open neighbour-
hoods is the set
B(z) = {0,@=V,0)u( U H@®OUGO): n=12..}
teV n(2)\iz}

where V,(z), n=1, 2, ..., are open neighbourhoods of the point z in the
space S.

It can be easily verified that the space T, (J) is Hausdorfl.

We prove that T;(J) has the following properties:

(P.1) Every continuous real-valued function of T,(J), restricted to J, is
constant.

(P.2) Every continuous real-valued function of each of the spaces
T, (L(x <)) T (L(< X)) T (L(x <)) Ty (L(< %)} T (L(x, y]), T(L[x, y]), and
T, (L(x, y)), restricted to L(x <), L(< x), L(x <), L(<x), L(x, y], L[x, y],
and L(x, y), respectively, is constant.

(P.3) If x, y are non-successive points of J, then the sets L( < z), L(z <),
zeL(x, y), are separated by a continuous real-valued function of T,(J)\ \z}.

Proof. (P.1) Every two points x, y of J are either successive or not. If
they are successive (hence isolated in J), there exists a copy J* & T, (J),
A =(x, y), such that

FA_ qA, ¢
J*=JV \x, y],
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which implies that, for every continuous real-valued function f of T, (J), f(x)
= f(y). If the points x, y, x < y, are not successive, then we consider the set
T (L[x,y) = Llx,ylu U J~

AeAlx,y]
It can be easily proved that every continuous real-valued function of T, (J)
restricted to D nL[x, y] is constant, and since D N L[x, y] is dense in
L[x, y], it follows that f is constant on L[x, y], i.e., f(x) = f(y).

(P.2) It is proved in the same way as (P.1).

(P.3) Since z eL(x, y), either z is isolated in J or z€Z* NnL(x, y). If z is
isolated, then for the copies J“, J*? attached to z we have

)‘l =(d1, Z), ).2 =(Z, dz) and {Z} =.-i11m.712.
If zeZ* nL(x, y), then no copy is attached to z. In both cases the sets
Lz<)u U J* and L(<z)u (U J*

AeA(z <) leA(<2)

are open-and-closed -in T, (J)\ !z}, and hence the characteristic function
separates them in T, (J)\ \z}. Therefore, it separates their subsets L(z <) and
L( < z), respectively.

After we constructed the space T;(J) and following the linear order on
each copy J%, A €4, of the space T, (J), we attach disjoint copies of J on each
copy J, A€, in the same manner as we did for the construction of T, (J).
Thus, we construct the space T;(J) = T;(T;(J)), and then, by induction, the
space T,(J) = T (T,-1 ().

We set

TU) = QO T.U),

where T,(J) = J, and on T(J) we define a topology as in [11], Section 4, for
1(X).

In the sequel, to simplify the notation we will write T and T,, n
=0,1,..., in place of T(J) and T,(J), n=0, 1, ..., respectively, and if no
confusion is alike, the subsets of the space J will be identified with their
copies in JA

PrOPOSITION. The space T has the following properties:

(T.1) It is Hausdorff connected.

(T.2) For every copy J* and every teJ?, if n is the minimal integer for
which J* & T,, the sets T(L(<t)) and T(T,\L(<t)) are connected.

(T.3) Every point of T is a cut point, cutting the space T into connected
subspaces.

(T4) If x, yeT and x, y are not successive, then E(x, y) # O.
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(T.5) For every two connected subsets M, N of T the set MNN s
connected. '

Proof. (T.1) That T is Hausdorff follows directly from the definition of
the topology on T. In order to prove that T is connected it suffices to show
that if x, y are two arbitrary points of 7, then f(x) = f(y) for every
continuous real-valued function f of T. Let x, y be two points of T. If they are
not successive, we have the following cases:

(1) Both x, y belong to a common copy J* and L(x, y) # ©.

(2) The point y belongs to a copy J* & T, for some integer n, but
xeJ*\JA

(3) The points x, y belong to arbitrary copies J“°, J'°, respectively, and
x¢J'° y¢Jo.

The cases where x, y are successive (and hence they belong to the same
copy J%) or they belong to the same copy J#, but L(x, y) # @, are proved in
the same way as (P.1). For if n is the minimal integer such that J* & T,, then
the space T,.,(J* is homeomorphic to the space T, (J).

For case (2) we first consider the set

Ly<)={zel* y<z} T,
and then the set
Ly<)u( U JHuix}

AeA(y <)

which is the required set joining the points x, y.

For case (3) let m, n, m < n, be the minimal integers for which x€T,,
yeT, and let J*°, J'° be the copies containing the points x, y, respectively.
Consider the set

Liyw=Ly<)v U JA

AeA(yS)

The copy J'° is attached to a unique pair of successive points y;, y, of a
copy J'! in the subspace T,_,. Qbviously,
T'=J"0 W, -
Assume that y; <y, and consider the set
Liyp=Ly, v U J.

AeA(yy )

Similarly, the copy J'*! is attached to a unique pair of points y3, y, of a copy
J'? in the subspace T,_, for which

72 v2
J*=J U{Y'z, y2}
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Assume y, <y, and consider the set
L,y=Ly, v U J.

AeA(y2 S)
Continuing in this manner we find a copy J'""™*! and two points y,_ .+,
Yn-m+1 SUCh that y,_mii, Ya-ms1 €J " ™1 E T,y We set
Ln—m+l(y) = L(yn-m+l S)U U ‘,l
2eAyp—m+1S)

and let y,_,., Yo—m be the points of T,, to which the copy J'»~™*! is attached
(that iS, jvn—m+l = J"n—m+l v :y;u-rm yn—m})-

For the points x, y,—m, Vu-m of T,, we have three cases:

(3a) They are distinct and belong to the same copy.

(3b) The point x coincides with one of the points y,_ ., Va-m-

(3c) The point x belongs to a different copy than the points y,_ .., Vn-m-

It is obvious that for case (3a) the required set joining the points x, y is

n—-m+1

U L,(Y)UL[X, y;n—m]U U Jl lf X <y;|-m
i=0 A€A[X, Yy — )
or
n—-m+1
U Li(y)UL[yn-'m XJU U J)' if Yn-m <X,
i=0 AedAlyp— ppox]

and for case (3b) the set

n—-m+1

U Lpuwx) if x=y,por x=y,n.

For case (3c), where x€J"®, y,_ ., Yo-m€J" ™ and pgy # V,_n, WE repeat
the above process for the point x and in a “parallel” way for the point y,_,,
(f yp—m < Yu-m) or for the point y,_, (f y,—m <y.—n). Thus we find a
common copy J' & Ty, k <m, where the pairs x,,_;, Xn—x and y,_,, Yo
corresponding to x, y, respectively, belong. Since the points x,,_,, x,-, and
Vn-ks Yn-x are successive, either are all distinct or two of them coincide.

Hence, setting
n—k+1 m—k+1

A="U Lo, B= U L,

it is obvious that the required sets are the following:

AUBUL[X,,,_,‘, y;l—k:lu U Jl if Xm—k <y;l—k’

AEA[xm—kly’n-—k]

AVUBUL[yp—k> Xm-r] Y U 4 i Ypok < Xpneis

AeAyy—gsXm—k)

f .
AuBuy lxm—k} if Xm—k = y;l—k’

AUBU \Ypi) il Yook = Xy
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(T.2) It is proved in exactly the same way as (T.1).

(T.3) Let t €T and n be the minima! integer for which ¢t € T,. There exists
a copy J* & T, such that r eJ*. Consider the subspaces L(< ) and T,\L(<1) -
of T,. By the construction of T,,,, for T,,,(L(<1?) and T,.,(T,\L(<?t)
we have

Toe1 (L(< ) N Tout (T\L(< 1)) = <t}

Consider now the connected subspaces T(L(< 1)) and T(T,\L(< 1)) of T. By
the construction of T it follows that

T(L(<)) N T(T,\L(< 1) = 1.

(T.4) Since the points x, y are not successive, we consider the three cases
described in (T.1) above. For case (1) it is obvious that E(x, y) = L(x, y), and
for case (2) that E(x, y) = L(y <).

For case (3), which is divided into three subcases, the required sets are:

for (3a),

n-m+1

Ly<)v U LoiS)VLX, yp-mw) if x <ypom,
E(x, y) = womt 1
Ly<)v U Ly:i<)VLDp-mx) if yp_p <x;
i=1
for (3b),
n-m+1
Ex,p=Ly<)v U L <)
for (3c),
A'UB U L[Xp-ks Ya-k] il Xk < Yp-ss
- A’UB' UL[yn—k, xn-k] lf yn—k < x;n-k’
ECoN=94upoix . if Xpoy = Yook
A'UB U \Yp-i) if Yook = Xp—i;
where
n-m+1 n-m+1

A =Ly <)u '91 Ly;€) and B =L(x<)u '91 L(x; <).

(T.5) Let M, N be two connected subsets of T and x, ye M N N. If x, y
are successive, there exist a copy J* and an integer n such that x, yeJ?, A
=(x, y) and J* = T,. Since every continuous real-valued function of the
connected subset M is constant, there exists a point ke(Z*)* =J* such
that 'k, k+1,...] = M. Similarly, for the connected subset N there exists
le(Z*)* =J* such that {l,I+1,...! = N. Hence for the set of cut points
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separating the points k, x (or k, y) of M and the points [, x (or /, y) of N
we have

Ek,x)=E(k,yy=Lk<)cM and E(,x)=E(,y)=L(I<)<N.

Setting m = max (k, I} we obtain L(m <) = M NN, which means that
the successive points x, y cannot be separated by disjoint open-and-closed
subsets in L(m <)u {x, y}, and therefore cannot be separated by disjoint
open-and-closed subsets in M N N.

If x, y are not successive, then every pair of successive points of
E(x, y)u {x, y} =M NN, cannot be separated by disjoint open-and-closed
subsets in M N N, and hence every pair of points of E(x, y)u {x, y} cannot
be separated. Therefore, in both cases the set M N N is connected.

2. We now construct first a countable connected Urysohn space such
that the intersection of every pair of connected subsets is connected, and then
a countable connected Urysohn almost regular space with this property. For
the first space we need to construct a countable Urysohn space Y having
two points a, b such that f(a) = f(b) for every continuous real-valued
function f of Y, and for the second, a countable Urysohn almost regular
space R having two points a, b such that R is regular at a, b and f (a) = f(b)
for every continuous real-valued function f of R. Then, using the method of
Section 1 we shall construct in each case first the space T,, and then the
spaces T,,..., T,,... and T This final space T will be the required one.

(A) In the space of real numbers with the usual topology we consider
the subspaces

X,=Z"0lktl/m: keZ*, m=3,4,..},
X, =2 "Vlktl/m: keZ",m=3,4,..},

where Z* and Z~ are the positive and negative integers, respectively. In the
topological sum X,; U X, we add one more point p and we set

X=X,u{plulX,.
A basis of open neighbourhoods for the point p is
B(p) = Vu(p) = p)udt Ay n=1,2,..),

where
A= U k=1/m: m=3,4,..}u U f(k+l/m: m=3,4,..},
k=2n kz22n-1
Ar = U lk=lYm:m=3,4,..}u U (k+l/m: m=3,4,.}.
kS —2n+1 k< = 2n

Observe that the set D = (k+1/m: keZ* UZ~, m=3,4, ...} consisting of
the isolated points of X is dense.
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Let X!, X@ ., X™ ... be disjoint copies of the space X. In the

a
topological sum () X we add two more points a, b and we set

n=1
Y=(U X")u la, b}.
n=1
In order to define a basis of open neighbourhoods for the point a we first
consider the sets
A* ={2n+1/m: neNy,m=3,4,..)0U2n—1-1/m: neN,,m=3,4, ..},

A" =!-2n—-1/m: neN;,,m=3,4,...)U!=2n+1+1/m: neN,,
m=3,4,..},

where N, and N, are the odd and even positive integers, respectively. Set A
=A*UA" and let A® be the copy of A in X®. Then a basis of open
neighbourhoods for the point a is

B(a) = [V,(a) = la] (U A¥): n=1,2,..}.

Similarly, for the point b we have
B* =

f

t
B~ =!{—2n+1+1/m: neN,,m=3,4,...0 Ui{—2n—1/m: neN,,
m=3,4,..]

2n—1—1/m: neN,,m=3,4,...) u {2n+1/m: neN,,m=3,4, ..},

and B=B* UB~. If B® is the copy of B in X®, then a basis of open
neighbourhoods for the point b is

B(b) = {V,(b) = {b}u(kg B%: n=1,2,...}

It can be easily proved that Y is Urysohn and f(a) = f(b) for every

continuous real-valued function f of Y. Observe that the subset () D™ (D™ is
n=1
the copy of D in X‘f”) of the isolated points of Y is dense.
CoroLLARY 1. There exists a countable connected Urysohn space in

which the intersection of every pair of connected subsets is connected.
Proof. Let Y be the space constructed above and Z~ be the set of
negative integers. In Z~ U Y we consider each point of Z~ to be isolated.
Set J=Z~ uY\{a, b} and define a linear order <* on J as follows:
If x, yeZ~ and x < y (in the natural linear order < of the set of real
numbers), then x <*y. If x®eX®, x™eX™ and n < m, then

If X yWeX™ (n=1,2,..), x" y™eX® (or x, y™ecX®P) and x <y in
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X, (or in X,), then
x® <* y(n).
And if zeZ~, xX"eX{, y™eXP and p™ is the copy of p in X™, then
z S*x"” S*p(") S*y"".

Following this linear order we construct the spaces
L), .Y), ..., ., ..., TWU)= UOTZ.(J)

in the same manner as in Section 1 (i.e., the copies of J are attached to
the successive and isolated points, no copy is attached to (the copies of)
zZ*, Z°, p).

It is easy to check that T is Urysohn. The other properties of T are
proved as for the space T of the Proposition in Section 1.

(B) In order to construct the second space we first consider the sets
M, k™)=1{(nk): k=0, -1, =2, ..., —n},
M, k*)=1{(n,k): k=0,1,2,...,n},
M(n, k)= {(n,k): k=0, +1, +2,..., +n},

where n=1, 2, ... We set

M= glM(n, k)

and on M we define the following linear order: if n < m, then (n, k) < (m, k).
If nis odd and k, < k,, then (n, k;) < (n, k). If n is even and k, < k,, then
(n, ky) < (n, k).

Following this linear order we attach disjoint copies of the space J of
Corollary 1 to each pair of successive points of each set M(n, k), n
=1, 2,..., and we consider the topological sum

0=UMm kv U J‘),
n=1 AeA(n,k)
where
A(n, k) = (d,, d)eM(n, k) x M (n, k): d, <d,, d,, d, successive}.

It should be noted that for every n =1, 2, ... no copy is attached to the
pairs

- (2n—1, —(2n—1)),(2n, —2n) and (2n, 2n), 2n+1, 2n+1).

On the space @ we add two more points a, b and we set R =Qu la, b. In
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order to define a basis of open neighbourhoods of the points a, b we first
consider the sets

Q‘=QI(M(n,k‘)u U, Q*—Q(M(n,k*)u U g

AeA(nk ™) n AeA(nk™t)
where

A, k™) ={(dy, d))eM(n, k") xM(n, k™): d; <d,, d,, d, successive},
A(n, k%)= {(dy,d))eM(n, k*)xM(n, k¥): d| <d,, d,, d, successive}.

Then for m=1, 2, ... we set
A, = {J‘"mu (n, —m)}: A7 =((n, m), (n, —m+1)),n=m, m+1, },

B, = [ U i, m): Am =(n, m), (1, m—1)), n=m, m+1,..}.

A basis of open neighbourhoods of the points a, b are the sets

B(a) = {V,,,(a) = {a}u(X'\Z); A):m=1,2, },

m-—1
Bb) = {Va) = b} u(X*\ U By m=1,2,...}

where 4o =By =1{(n,0:n=1,2,...).

It can be easily proved that R is Urysohn almost regular and f(a)
= f(b) for every continuous real-valued function f of R. To prove that R is
regular at a, b observe that, for m=1, 2, ...,

Vs1@ = Vs @uU i(n, —m): n=m+1,m+2,...) <V,(a),
Vs 1(0) = Vur i D)L i(n, m): n=m+1, m+2,...) <V, (b).

CoRrOLLARY 2. There exists a countable connected Urysohn almost regular
space in which the intersection of every pair of connected subsets is connected.

Proof. Let R be the space constructed above and Z~ be the set of
negative integers. In' Z~ U R consider each point to be isolated.

On Z~ u M we define the following linear order <: On Z~ the order is
the induced natural linear order of the set of real numbers. On the set M the
order is as defined in (B) above. If zeZ~ and meM, we set z < m.

We set J'=Z" UR\ {a, b} and following the order on Z~ and on the
pairs of points of M where no copy of J was attached, ie.,

A= \zy,2,)€Z7 XZ™: z; <z,, 2y, z, successive!
U (2n—1, —@2n-1)),2n, =2m): n=1,2,...}
U ((2n, 2n), 2n+1, 204 ) n=1,2,...],
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we construct the space
T,J)=JulJ?

AeA

as in Section 1.

Repeating this attaching to each (attached) copy of J' and attaching
copies of J' to each copy of J (following the linear order <* on J defined in
Corollary 1) we construct the spaces T,(J"), ..., T,(J'), ... and

107 = U ).

That T(J’) is almost regular follows from the fact that R is regular at a,
b and the copies of J’ are attached to the dense subset of isolated points. The
other properties of T(J) are proved as in the Proposition of Section 1.
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