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ON GROUP OPERATIONS IN GROUPS OF EXPONENT k

BY

A. SOLECKI (WROCLAW)

In this note we are concerned with group operations of a specific
form in groups of Burnside varieties and we estimate their number by
means of the exponent &k of the group.

Consider the following property of a group G:

(*) In the group G there exists an operation (word)
zoy = a'1y”r ... arybr,

where a;, b; are integers for ¢+ = 1, 2, ..., r, different from the operations
xy and yx (1. e. not identically equal to xy or yx) such that:
(i) the elements of G form a group G, under the operation xoc y;
(ii) xy is an operation in G,, i. e. there exist integers ¢; and d; for
j =1,2,...,8 such that
d

gy = (B)go(¥)g 0 ... o(@)e o (¥)ge,

where (2)? denotes a*® power of z with respect to the multiplication < in G,.

The problem of existence of groups with property (x) was raised
by Marczewski and Goetz in [1] and positively solved by Hulanicki and
Swierczkowski in [2]. In [3] A. P. Street gave description of group opera-
tions in some classes of groups.

Professor C. Ryll-Nardzewski has observed that in the variety of
groups of finite exponent k¥ any word zoy = (z"y™)", where mn = k+1,
is a group operation. The associativity of this operation as well as the
identity xy = (2"oy")" follow immediately from the identity ™" = 2
(we may write 2* instead of (2); because these operations are identical;
cf. [1]). It has been left to check whether this operation differs from zy
and yz.

PRroPOSITION 1. Let G be a non-abelian group of finite exponent k and
let mm = k+1. If the conditions (m—1,n—1) =1 and (m+1,n+1) =1
are satisfied, then xoy = (" y™)" is the group operation different from xy

and yzx.
(The symbol (a, b) denotes the g.c.d. of the integers a and b.)
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Proof (indirect). Let zoy = xy for all z,ye@. Then z ™ 'oyox =
x 'yr. But x 'oyox = (x "y"x™)" = x~ "ya™. Hence z™ 'y = yz™ ! and
thus 2™ '¢ Z (@) (centre of @) for every xeG.

The condition (m—1,n—1) =1 is equivalent to (m—1,%k) =1
because k = mn—1 = (m—1)n+ (n—1) and, therefore, 2™ 'e¢ Z(@) im-
plies ze Z (@), contradictory to the assumption that G is non-abelian.

Next, suppose that zoy = yx for all z, ye G. Similarly, we obtain
g 'oyoxr = zyx~' and x loyox = &~ "y2™. Hence we have yz™"' = g™ty
and thus 2™*'e Z (@) for every ¢ G. And again, the condition (m +1, n + 1)
=1 is equivalent to (m+1, k) =1 because ¥ = mn+1 = (m+1)n —
—(n+1) and, therefore, 2™"'e¢ Z(@) implies xe Z(@), which is a contra-
diction.

These conditions are not necessary, as the case of the group §,,
(permutations of 11-element set) examplifies: k¥ = exp8,; = 27720 (the
product 5-7-8-9-11); this number can be written in the form k =
19-1459 —1. It is easy to check (e. g. by taking two non-commuting cycles
of length 7) that the operation (x'y'%)'**° is different from zy and yx

although not both conditions of Proposition 1 are satisfied.

Let us look for conditions implying existence of a group operation
of the form (z™y™)" different from xy and yx in a group G of exponent
k and estimate the number of such operations. First, observe that we
use the congruence mn = 1 (mod k) rather than the equality mn = k +1.
Using this we find a group operation of the given form in the smallest
non-abelian simple group, namely A, (even permutations of 5-element
set). Here k = expA; =30 and 7-13 = 3k+1, and so the operation
(z'y")'® is the group one in A,. It is easy to check (e.g., by taking two
non-commuting cycles of length 5) that it is different from xy and y.
Let us remark that in [2] and [3] the group operations were described
for varieties of nilpotent and soluble groups.

ProposITION 2. Let G be a group of finite exponent k. If there exists
an element a of order p‘, where p is a prime greater than 3, which does not
belong to the centre of G, then there exists a group operation o in G of the form
(™ y™)" different from xy and yx.

Proof. Take m prime satisfying m = 1(mod p)and m # p —1(mod p).
Moreover, to guarantee (m, k) = 1 assume m > k. The existence of m
follows from the Dirichlet theorem: if (s,f) = 1, then the arithmetical
progression {s-+-7t};2, contains infinite number of primes. Put ¢ =p
and, say, s = 2. There exists n such that mmn =1 (mod k) because — in
virtue of (m, k) = 1 — there exists a solution of the equation nm +1k = 1.
Thenzoy = (2™ y™)" is the operation we need. Take b e G such that ab # ba.
If z o y were identically equal to xy or yx, then (cf. the proof of Proposi-
tion 1) a™~'b = ba™ ! or a™"'b = ba™*!, respectively. But (m —1, p*) = 1
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and (m+1,p') =1 and in both cases we would obtain ab = ba, a
contradiction.

PROPOSITION 3. Let G be a group of finite exponent k. If there exist
elements a,, ..., a, G of orders p}, ..., pss, respectively, where p,, ..., Ps
are different primes greater than 2, which do not belong to the centre of G, then
the number of group operations of the form (x™y™)" in G such that any of
them s different from the others and from the ones obtained from the others by
the transposition of variables x and y is not smaller than

%]_7 (p.—1).

Moreover, if k = ¢f1... ¢}t (k # 2) is the decomposition of k into the
product of primes, then the number of such operations is not greater than

1 t
o 1] (ali—ai .
i=1

Proof. Let m = r;, (mod p,),? =1, ..., 8, be a system of congruences
with non-vanishing residues. Take arithmetical progressions {r;+rp;};~,.
They overlap because their differences p;'s are relatively prime and so
their intersection is also an arithmetical progression {u;};e, with the
difference p,...p,. This difference is relatively prime with the first
element u, as it is — being an element of the progression {r; +rp;};=, —
relatively prime with p, for each ¢ =1, ...,s. Using again Dirichlet’s
theorem we find m prime satisfying the system of congruences (in order
to guarantee (m, k) = 1 assume m > k). Next, take n such that nm =
= 1 (mod k). Thus, for the given residues r,, ..., r, we find a group oper-
ation (z™y™)".

Take two operations (z™y™)" and (z™y™)" corresponding to the
sequences of residues r,,...,7, and 7, ..., r,, respectively. If they were
identical, then (zx ™y™2™)" = (x~™ y™ &™)" and hence 2™ ™y = yz™ ™.

Suppose 7, % r;. Then m'—m = 0 (mod pl). Take be @ such that
a;b # ba;. By (m'—m, p!) =1, the equality af ™b = ba]* ™ would
imply a,b = ba,;, contrary to our assumption.

On the other hand, suppose that (z™y™)" = (y™ «™)" for all z, yeG.
Then (z~™y™az™)" = (& y™ =™ )" and ya™™ = ™™ y.

Argument similar to the previous one shows that r,+7; = p; for
i =1,...,8 Thus, only if the above equalities hold, two different se-
quences of residues may lead to operations differing by transposition of
variables. Hence we obtain

% [_] (p;—1)
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as the lower bound of the number of essentially different group operations
in G.

The upper bound of this number follows immediately from the remark
that the condition (m, k) = 1, which is necessary for the existence of
n such that nm = 1 (mod k), is equivalent to the conjunction of condi-
tions (m, q;) =1,j = 1,...,t The number of m’s satisfying the §** con-
dition and giving different residues mod ¢’/ is equal to ¢J — ¢5i~'. (Evidently,
for a given m, if nm =1 (mod k), then the residue of » mod k is uniquely
determined.) We divide the product of these numbers by 2 because if
m-+m’ = ¢ (mod k) forj =1, ..., t, then the respective group operations
(@™ y™)" and (™ y™)* differ by the transposition of variables x and y.

PROPOSITION 4. Groups G with the operation xy and G, with the operation
xoy = (z"y™)" are isomorphic. The isomorphism h: G — G, is given by
h(z) = x".

Proof. We have
h(zy) = (xy)" = (&""y"")* = 2"oy"™ = h(x)oh(y).

Thus, in a group of exponent k raising to the '™ power is an auto-
morphism if and only if for mn =1 (mod k) the operations (z™y™)"
and zy are identically equal.
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