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The following properties of a subset 4 of the real axis L were
introduced in [1].

I: A has property I (or is an I-set or belongs to the class I: A el) if
every bounded real or complex valued function on A which is uniformly
continuous on A with respect to the usual metric in L can be extended
to an almost periodic (a. p.) function over L.

I,: Terms and definition are analoguous but the uniform continuity
is not assumed.

As was pointed out in [1], these properties make sense for an
arbitrary locally compact abelian group @G instead of L. Obviously, the
uniform continuity must then be understood with respect to the uni-
form group structure in G. No attention was given in [1] to property I
except for @ = L (only I, was investigated in the general case). How-
ever, we find suitable to treat here both I and I, for arbitrary abelian
locally compact groups in spite of the fact that I is irrelevant for compact
groups since every set is then an I-set. Similarly, two other properties
defined in [1] for sequences of reals may be now reformulated for the
general case:

AeO if ‘u(zi) = 0, A (or A~) denoting the weak closure of A4, i.e.
its closure in the Bohr compactification G of the group G (for the

definition see [1], p. 24) and u being the Haar measure in G,

A B if there is a compact set K < G such that 4+ K = @Q.

The unsolved problem P 452 in [1] was: does I, or even I imply O?
The unsolved problem P 453 was: does I, or even I imply the negation
B’ of B?

Both problems were formulated only for G = L and for A = {a,}
(@py1 > a,). We must correct at this place some error in [1]: property B
was there defined as a,,,—a, <d (n =1,2,...). But then the impli-
cation I — B’ is false for bounded sequences and for unbounded it
follows from I, — B’; thus the second question in P 453 should not have
been posed at all. If we had adopted for B our present definition, I -~ B’



80 S. HARTMAN AND C. RYLL-NARDZEWSKI

would be equivalent with I, — B’. This equivalence is true for all locally
compact non-compact groups, as can be easily proved; for compact
groups B is fulfilled trivially by every set and so I — B’ is wrong. Thus,
at any rate, we have to drop the second part of P 453. It remains the
question: does I, imply B’ for non-compact groups? (P, 453 ()).

Now we are able to answer positively the first part of P 452 for
non-discrete separable groups and P,453 for separable non-compact
groups. The corresponding theorems and some corollaries resulting there-
from are object of section 2. Section 1 is devoted to a preparatory
“thickening theorem” (Theorem 1). In section 3 we deal with the problem
of finding a. p. extensions the Fourier series of which converge absolutely.

1. THEOREM 1. If A is an I,-set in a separable abelian locally compact
group G, then there exists a neighbourhood V of the identity (<. e. of the zero
element) in G such that E = A+V s an I-set.

Proof. We notice that every I,-set consists of isolated points only
and so in view of the separability of G we may arrange 4 in a sequence {a,}.
Next we show that it is sufficient to find a compact neighbourhood V
with the following property:

(») for every 0-1 sequence {t,} there is an a.p. function such that
fla,+u) =1t, (ueV; n=1,2,...).

If f is a real valued function, defined and uniformly continuous
on K and if @ < b, then we put K, = {reE: f(z) < a} and E, = {zeE:
f(z) > b}, and we have to prove that B, ~ E, = @. This will show that £
is an I-set, in view of the evident lemma (cf. [1], Lemma 1): If f is
a bounded real function defined on a subset E of a normal topological
space X and the closures of the sets {zeE: f(z) < a} and {zeE: f(z) > b}
are disjoint for any numbers a and b > a, then f has an extension to
a continuous function on X.

Assume to the contrary that F, and E, have a common cluster
point a in @G. From () it follows that for every splitting N = N, v N,
of the set N of positive integers the sets

|U (@ +7)]~ (6=1,2)
neN;

are disjoint. Hence, for each weak neighbourhood U of a there must
be an index n such that there exists a point zeE, ~ (a,+V) ~ U and
a point yeH, ~ (a,+V)~ U. Hence z—yeV—V. Since V is compact,
the topology in V—7V is the same whether this set is considered in G
or in @. So for every neighbourhood W of the identity in G we can find U
such that for z, ye U the condition x—y eV —V implies x—y<W. Hence

(1) The subscript ¢ stands for ‘““correct’.
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for every W there would be two points zeF,; and y ¢ F, such that z—yW.
This contradicts the uniform continuity of f on E.

Let now {V,} (»n =1, 2,...) be a complete system of compact neigh-
bourhoods of the identity in the (separable!) group G. If ¢ = {¢,} is a fixed
0-1 sequence, we put N = {neN:t, =0}, N.={neN:t, =1}, A!

= {a,: neN,} and Al = {a,: neN,}. Since A, and A, are disjoint in the
(normal) space @ we can find a neighbourhood U of the identity in @

such that A1+ U and A2+ U are still disjoint. There is an n such that
Vo< U and so (4,+V,)” and (4,+V,)” are disjoint.

Let C be the cartesian product of 8, cyclic groups C,. We consider
each ¢ as an element of ¢ and claim that for every fixed m the set

Zm = {t: (A 4+ V)~ ~ (45 + V)~ = B}
is a subgroup of C. To show this one must prove that for ?,,t,eZ,,

N, = (N9~ Nb) o (Nt A N&), N, = Na=~N2 (= denoting the sym-
metric difference) and 4; = {an: neN;} (¢ =1,2) one has

1) (A1 +Vm)™ A (4 +VR)™ = 0.

We observe that if a set D is disjoint with both D1+V and D2+V

then it is also disjoint with (D; v D,)~+V = (D1—+—V (D + V). We
put

D = [(APN\A42)+V,]1~, D, = Ah ~ A, D, = A A AL,

Since A, = (A%~ Ab) o (49~ AR) and 4, = A=Al (i =1,2)
we have to prove that

(2) D~ (D+V,) =0 and (3) D~ (Dy+Vn) =9

The analogous formulae with ¢, instead of f, and vice versa follow
then by symmetry and the four together imply (1).
The set D is contained in (454 V,)~ and in view of #,eZ,, it is

disjoint with the set (A“+V,)~ containing D;+ V.. So (2) holds. On
the other hand, D = (4324 V,,)™~ (since t,eZ, and A} v A = A) whereas
D,4+V,, is a subset of (A%2+V,)~. Hence (3) holds in view of t,eZ,,.

Observe that in view of the definition of Z,, the set {a,+V,,} fulfils
partially condition (*), namely with respect to all 0-1 sequences from Z,,.
We must now find V which would be good in general. We begin with
proving that Z,, is measurable with respect to the Haar measure in C.
For this purpose we will show that Z,, is an analytic subset of C. Let X
be the space of all continuous functions on G with a topology of uniform
convergence on compact sets. Since G is separable and locally compact
(so o-compact), X is a separable metrizable complete space. The almost
periodic functions form a Borel set Y in X. In fact, denoting by g = {g,}

Colloguium XV. 6
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(9. €@) an element of the (separable) space G*, we have

(feX)=AVV AV ué\a(lf(u-l—z)—f(u-kgn)l < e).

e>0 g ueN 2eG n<pu

The third and fifth quantor are obviously countable; the first can be
replaced by a denumerable one (e. g. by taking ¢ rational), this being the
case for the remaining quantors too, in view of the separability of G
and G® and the uniform continuity of f. The sets of the form {f: f(u,)
= a,} are evidently closed, hence Y is Borel. Now we write

(teZn) = V A (f(a'n+Vm) = tn)-
fe¥ n

This is enough to see that Z,, is analytic. Since 0 = \J Z,, Z,, = Zpn s

m=1

and the Z,’s are measurable, all Z,,’s for m sufficiently large are of posi-
tive Haar measure and hence open subgroups of C. Since C is compact,
there must be an index m, such that Z, = C. This means that the set
{@n+ Vm,; has the desired property () and so it is an I-set.

Let us remark that Theorem 1 is irrelevant for discrete groups,
because the assertion is then satisfied for V = (0).

2. THEOREM 2. If G is non-discrete and separable and A i8 an I,-set
in G, then y(zi) = 0.

Proof. According to Theorem 1 we choose a neighbourhood V of
the identity in G so that 44V be an I-set. Since G is non-discrete, V

consists of infinitely many points. If z,,z,¢V, x, # z,, then the set
2

U (4 +;) is an I,-set because every bounded function f on it can be
:)blviously extended to a uniformly continuous function on A+V and
further to an a. p. function over G. In particular, one can put f(z) =0
for xeA + x, and f(x) = 1 for ze A+ x,. Hence the weak closures (4 + z,)~
=j+w1 and (4+x,)~ = Je‘i+ac2 are disjoint. If now x,, xz,, 25, ... are
different points from V, then the sets j—{—wi are pairwise disjoint and the
u-measure of each of them is evidently equal to ,u(ﬁ). Since y(é) =1, it
must be y(zf) = 0.
Remark 1. Theorem 2 does by no means imply that

#((O A+ai)) =o.

It is still an open problem whether ,u(A~ ) = 0 must hold for every
I-set in a non-compact group (P 547).

Remark 2. In the intrinsic language of the group @, ,u(ff) =0
for A being an I-set means that for every ¢ > 0 there is a non-negative
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a. p. function equal to 1 on A whose mean value is less than ¢. In fact, this
follows at once from the known equation

mean value of f = f fr(z)du,
&

where f* is the continuous extension of an a.p. function f over G.

THEOREM 3. In a separable, locally compact but non-compact group G
property I, implies B'.

Proof. Let A =« G and 4Ael,. By [5] (Theorem 1 (%)) the set 4 has
no weak accumulation points in @. Clearly, every subset 4, = A has
this property too. Further, for every compact set K = G we have

(i) the sets A+ K and 4,4+ K are weakly closed in G, as they are
group-sums of a set weakly closed in @ and a compact set.

Let us recall once more that for subsets of G the compactness and the
weak compactness are equivalent, and, moreover,

(ii) on a bounded subset of G (i. e. such that its closure is compact)
the strong and the weak topology coincide.

We will show now that both topologies coincide on 4+ K. For an
arbitrary point z,e 4+ K we put

A, = {yed: 2o ¢y +K}.

It is easy to see that xye(A+K)\(A,+K), the set AN\ A4, is finite
and, moreover, that the set (44 K)\(4,+K) is bounded and weakly
open in A+ K (see (i)). Hence, in view of (ii), the family of all sets of the
form U A ((A+K)\(4,+K)), where U is open in G and =z,¢U, is
a complete system of neighbourhoods in A+ K of the point z, in both
topologies. Consequently, if there were a compact set K = @ such that
A+K = @, then the weak topology in G would be the same as the
strong, hence G would be a compact group.

An obvious consequence of Theorem 3 is that an I,-sequence {a,}
on the real line has bounded differences: a,,,—a, < d. However, we do
not know whether an I-set on the line must be of the relative measure 0,
i. e. whether for an I-set A there is

1
lim |4 ~ (0, T)] =0,

T>o0

| | denoting the Lebesgue measure. It would be so if ,u(:4) = 0.

(3) This was proved for the real line, but the proof remains valid for every
separable locally compact abelian group.
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3. Let us denote by |a. p. (@)] the class of all complex valued almost
periodic functions on an abelian topological group @, with absolutely
convergent Fourier expansions. By the definition of the property I, every
bounded function ¢ on 4 eI, has an extension to an a. p. function f on G.
One can ask about the existence of an extension belonging to |a. p. (G)|(3).
This new property of 4 will be denoted by |I,|. Some positive partial
answers will be given below.

If fela. p. (@)| and f = D'e,xn, Where g, are characters of G, then we
define the norm ||f] = }'|c,|.

LEMMA 1. If fela. p. (H)| and h is a homomorphism from G into an
abelian topological group H, then fhela. p. (@) and |[fh| < |Ifll.

This inequality can be checked directly.

LEMMA 2. If G i8 compact and F, and F, are closed and disjoint sub-
sets of @, then there is a function fe|a. p. (G)| such that f(x) = 0 for xeF,
and f(x) =1 for xel',.

Proof. From the well-known theorem of Pontrjagin it follows that
there exists a homomorphism % of G into a finitely dimensional torus H
such that the sets h(F,) and h(F,) are disjoint. There is a separating
function g, i. e.

0 for wyeh(F,)),

*) I =11 tor yen(my),

which is regular enough (say indefinitely derivable) to have ge|a. p. (H)|.
Lemma 1, the property (4) and the evident inclusions

F,< b W(F,) and F,c h'h(F,)

imply that the function f = gk has all required properties.

THEOREM 4. If A c G and Ael,, and ¢ 8 a function with a finite
range, then @ admits an extension to an f from |a. p. (@)|.

Proof. It suffices to consider a function ¢ taking the values 0 and 1
only. Let~ k denote the natural embedding of G into its Bohr compacti-

fication . From the property I, of A follows that the sets
{k(x): zeA and ¢(x) =0} and {k(z):xed and ¢(x) = 1}

have disjoint closures F,, F, in Q. By Lemma 2 there exists a function
gela. p. (G)] which is equal to 0 on F;, and is equal to 1 on F,.
Obviously the function f = gk has the desired property.

(®) This question, in the case of real line, has been formulated by J.-P. Kahane,

who has also observed that an I,-set A has property |I,| if and only if A is the
Helson set (see [2], p. 139) in the Bohr compactification.
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For some special class of I,-sets on the real line L we are able to give
a complete solution.

THEOREM 5. Every sequence of reals {i,} (n =1,2,...) such that
(5) >0, t,fta>146 (6>0)
belongs to |I|.

Proof. Strzelecki has shown in [7] that sequences satisfying (5)
belong to I,. Now, let us observe that if A is an arbitrary I,-set and if
it can be split into a finite number of parts 4,, ..., A; such that A;e|l,)
(¢=1,..., k), then Ae|l,]. In fact, by Theorem 4 there are functions
€1y ...y €x€la. p.| such that e; is equal to 1 on A4; and vanishes on the
remaining A;. If ¢ is a bounded function on A gnd fi; denotes an |a. p.|

extension of ¢|4,, then it is easy to check that Y ef; is an |I,|-extension
i=1

of ¢.
In view of this remark we can restrict our consideration to sequences
satisfying

(6) t,>0, tonfta>3+0 (6>0).

Mycielski has proved [4] that, given a sequence A = {¢,} fulfilling
(6), there is a periodic continuous function F(?) such that every 0-1
function on 4 has an extension on the whole line of the form #'(qt), where ¢
is a suitably chosen constant #0. If we take F'(t) sufficiently smooth,
e. g. continuously derivable, then F is an |a. p.|-function and all func-
tions F(qt) have clearly the same norm:

(7) [F(g-)ll = C for all ¢ #0.

Let ¢ be a bounded function on A. We may assume that 0 < ¢ < 1.
We form now the dyadic expansion of ¢:

<p=2ji/2i, where j;=0o0r1,¢i=1,2,...

izl
We know that there is an |a. p.|-extension f; of j; such that ||f;| = C
(see (7)), hence the series 2 f:/2* (which is absolutely convergent in the

Tm=]
norm ||-]|) gives the required extension of ¢.
The general problem of the equality I, = |I,| remains open (P 548).
Let us mention that the answer would be positive if we were able to
prove the following

CONJECTURE. If T is a linear operator from a Banach space X into
the space m(A) of all bounded numerical functions defined on an absiract
set A, such that the range of T contains the set E(A) of all 0-1 valued func-
tions on A, then T'(X) = m(A).
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In order to see that the Conjecture really implies I, = |I,| one has
to put X = |a.p. (@) and T(f) = fla (feX, Ael,) and to apply Theo-
rem 4.

On the other hand, it turns out that the Conjecture formulated
above is equivalent to the following (unpublished) problem of S. Mazur
and W. Orlicz: A set @ in a Banach space is called barrel if every
sequence of linear functionals &,, &, ... which is pointwise convergent
to zero on @ is a bounded sequence, i. e. sup||&,|| < co. Is the set E(A)
a barrel in m(4)% "

Added in proof. Problems P 452 and P 453 have already been
solved (see [6] and [3] respectively).
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