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1. Let K be a quadratic extension of the rationals with class-number
h # 1. For any natural number » let f(n) denote the number of essen-
tially different factorizations of n into integers irreducible in K , and let
g(n) denote the number of different lengths of such factorizations. (The
length of a factorization » = r,...r;, where the r.—s are irreducible, is
equal to k.)

It was proved in [5] that for arbitrarily given M, for almost all
natural numbers f(n) > M, and, provided » + 1, 2, g(n) > M. (If h = 2,
then g(n) = 1 for all » [1].) Professor P. Turian asked whether it is possible
to find a normal order for f(n), i.e. such a function F(n) that for every
positive & and almost all » the inequality

[f(n)—F(n)| < eF(n)

holds (cf. [3], Chap. XXII, § 11). Of course, F(n) should be wellbehaved
in some sense, as otherwise one could simply put F(n) = f(n).

In this note, we show that there is no increasing normal order F(n)
already for the field Q((—5)"") (and, more generally, for any quadratic
field with A = 2). Possibly one could prove this for arbitrary fields, but
we did not succeed in doing this.

Moreover, we shall prove that for quadratic fields with A = 2 the
function F(n) = }loglognlogloglogn is a normal order of log f(n).
Finally, we determine a normal order of g(n) for quadratic fields with
h =3 or with h = 4, and with a noncyclic class-group. In the first case
it is equal to éloglogn, and in the second to éloglogn. The method
used here works for every quadratic field with a given class-group, but
the necessary computations are rather involved.

2. TuEOREM 1. Let K be a quadratic extension of the rationals with
the class-number h = 2. Then there exists no non-decreasing function F(n)
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such that for every positive ¢ and almost all n the inequality |f(n)—F (n)
< ¢F(n) holds, i.e. f(n) does not possess @ non-decreasing normal order,

To the proof we need a lemma, which we state in a slightly more

general form than we need to our purpose:
LemMA 1. Let w(n) be a strongly additive funetion, i.e. w(m-+n)

= p(m)+y(n) if (m,n) =1 and w(pk) = w(p) for all primes p and

k=1,2,... Moreover, let

A= Yv@p™,  Bu= Dw@)rp
D<n P<n
and let us assume that the following conditions are satisfied:
(i) w(p) is bounded independently of p,
(ii) im B, = oo,

(iii) There exists a positive constant B such that A, = pB,+0(By),
(iv) For every bounded function o(n) = 1, and for every fixed positive
' one has

An-g(n)_An+O(B1lz{§(n)"_'B:m,2) = O(B,!P).

If now H (x) is an increasing function, which is positive and for every
positive B satisfies the relation

lim inf H(z-+Bx'*)/H(x) > 1,

L—>00

and R(n) is a function which for square-free n satisfies with some fized k
the inequalities H (y(n)) < R(n) < H (p(n)+k), then R(n) does not possess
a non-decreasing normal order.

Proof of the lemma. Choose t;, < 0 <, in such a way that

t
A, = (2n)7' f exp(—u®[2)du > 1—6/x*,

2o = (2m) 2 f exp(—u2/2)du > 1—6/x".
b

(This is possible, as 2(1—6/x’) < 1.)
Let 8, = {N | 9(N) < Ay-+t, B¥} and 8, = {N | y(N) > Ax+1.BY}.

For any set W of natural numbers we shall denote by W(x) the
number of elements of the set W ~ [0, z].
By a theorem of P. Erd6s and M. Kae (see [2] )we have

lim 8,(z)x ' =2, and lim S,z = Ay,

T—>00 T—>00
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Let us now assume that there exists a non-decreasing normal order
for R(n), say F(n). Let us fix a positive number ¢ and define the set
Z = {N||R(N)—F(N)| < ¢F(N)}. By our assumption

lim Z(z)e ' =1.
w00

Let ¢) be the set of all square-free natural numbers and let X,
=Z~nQAS,Xy=Z~Q~8,. The sets X and X have both posi-
tive lower asymptotic density Indeed ZAQ)r) =Q(x)—7Z' () =
(6/x")x+o(x) and X;(x) = (Z ~ Q)(x > (6/=”) m—i—o $)+(};l—1)3}+
o(x) and 6/x"+4;,—1 is poutlve.

Observe now that there exists a constant B > 0 and infinitely many
pairs n,, n, such that

(a) ny, < my < ny+Bn,,

(b) nieX;, nyeX,.

Indeed, otherwise for every M >0 and N > §(M), NeX, there
would be no elements from X, in the interval [N, N+ MN], hence
X (N+MN)—X,(N) = 0, but for sufficiently large v we have » > X,(v)
— cv with some positive ¢, and so

0 = X, (N+NM)—X,(N) > eN(1+M)—

which is false for M >¢ .
For n, and =, satisfying (a) and (b) we have

(1+e) F(ny) = R(ny) = H(yp(ny)) = H(A,,+1,8;7)

and
(1—&)F(ny) < R(n) < H(p(ny)+k) < H(A, +1,B+k),
thus
H (A, +t,BL? 1
(1) Ty T hBal L I1e L P s By,

H(An +0uBJ+E) ~ 1—¢ '
But in view of (iii) and (iv) we have
A+ Bul+k = B, + By +o(B)
and
Any 1B = BB, +1,B +o(B).
Hence (1) implies

liminf H (x4 (t,—t,)p~"*2") [H (2) <1,

T—>00

contrary to our assumption. The lemma is thus proved.
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Proof of Theorem I. Let X be the non-principal class of ideals
in K. Let P, be the set of all rational primes which are norms of prime
ideals from X and are not ramified, and let P, be the set of all ramified
rational primes which are norms of prime ideals from X. The set P, is
finite, possibly void.

Consider an arbitrary square-free natural number n with the follow-
ing factorization in rational primes:

W= Py PpPro1.-- Ps B, Where py, ..., Py belong to Py, Pri1y---y Ps
belong to P,, and R is a natural number having no prime divisors from
P, and P,. Let p; = Poi_1Pai (0 =1,2,...,7; p;eX). Every factorization
of the number p, ..., into integers irreducible in K has the form

r

proeepr= ] | (95 05)

k=1
and there are evidently (2r)!/r!2" such factorizations. Consequently
fn) = f(pyr.--Pr) = (2r)!/r!2". For the same reason the number P, ... Ps
can have at most (2s)!/s!2° factorizations, consequently we have f(n)
L f(py...Ps) = (2s)!/s!2°, as the number R has no influence on f(n).
Let us denote by wp, (n) the number of primes from P, dividing n,
and let H(x) = (2x)!/2z!2° for natural x. Then the above inequalities

imply that for square-free n we have

H (wp,(n) < f(n) < H(op,(n)+Fk),
where % is the number of rational primes ramified in K.

To check that wp (n) satisfies the assumptions of Lemma 1 we use
the following result, which follows by partial summation from Satz 85
of [4]:

If Y is an ideal class, then

N(p)* = h~oglogz +a+0((logz)™’).
D‘Y,NP<-’L'
From this the following evaluation follows immediately:
If Y is an ideal class in a quadratic number field, and P is the set of

all rational primes which are norms of prime ideals from Y, then

(2) 2 p~! = ehlogloga +-a+ O ((logz)™"),

p<x,peP
where ¢ = % if Y* is the principal class, and & =1 otherwise.

The function wpg, (n) is evidently strongly additive and 4, = B,
— 1logloga+a-+ 0 ((loga)™") by (2). (Actually P, is not the set of all ratio-
nal primes which are norms of prime ideals from a fixed ideal class, but
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differs from such a set only by a finite number of primes, which does
not affect (2) in principle (only the constant a will change).)

Now it is easy to see that (i)-(iv) are satisfied and, because the ratio
H(x+1)/H (x) tends to infinity, we can apply Lemma 1 to get the wanted
result.

3. Now we consider log f(n) and prove
TueoreM 11. Let K be a quadratic extension of the rationals with
the class-number h = 2. Then

(i) Y log f(n) = }x(loglogxlogloglogx) -0 (xloglogx) and

n<x
(ii) For every function r(x) tending to infinity with x, the number of
natural numbers less than wx, for which

llogf(n)—1(loglogx)(logloglogx)| = r(x)loglogx (10g10g10gm)”2

holds is o(x).

(This clearly implies that log f(n) has the normal order }(loglogn) x
X (logloglogn).)

The proof of (ii) as well as of the corresponding part of Theorem
IIT below is based on the method used by Turan in [6] to give a simple
proof of the Hardy-Ramanujan theorem.

In the sequel, let @ be the set of all rational primes which are norms
of prime ideals from a fixed ideal class, and let g be the Dirichlet density
of ¢). As usual,

wg(n) = 21 and  Qg9(n) = 2 m.

qn qe)
qeQ) amn

LEMMA 2. Let h(n) be one of the functions wg(n), 2g(n). Then

(a) Zh(n) = pd~"wloglog (xd ™) +0 ((1+h(d))zd ")

din
and
() M) = ﬂd_lw(loglog(xci_l))2+0((1 +h2(d))xd—lloglog(xd—l)).

n<&

din

Proof. Clearly

D 2y(n) = D Qp(m)+ [wd 1] 24(d).

d\n m<x/d
nex
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But
S om=3 Si-3 3 31
m<a:|d m<x|d QeQ m<x|d
"lm q<wld q”<~’c/d qrim
= Z Z [wd~'q"] = xd™" Z q"'+0(21)
7 of cazid Q) Q§Q
oLl e o i o </
= fxd~'loglog(xd™")+0(xzd™ "),
whence
N y(n) = prd~"oglog (zd ")+ 0 ((1 +Q(d)wd ™).
=
Further,
Z wg(h) = Z‘ 21 == Z 21 = 2 [x/dg]+ Z [@/d]
d|n din qeQ <% Nn<T de<w, qtd q<wx,q|d
n<x n<r qn qeQ) g]l;’: qeQ qeQ)
T
== N 1g+0((1+wg(d)ed )
d &=
q<Q, q1d
— ﬁmd‘lloglog(w/d)+0((1—|—ch((1))$(1“1)
and
N ym) = D) Qh(m)+29(a) N Qg(m)+[w]a) Q(d).
na!;’;z m<x/d mex|d
But
D Gpmy= 3 M 1=} > Y1
mezx/d m<w/dqr/n d1jn Qe%d :;lleQ ?Zﬁﬂd
qeQ qlsQ =HE l<ara a"llm

= N N g0 N Y ajage o)

Q110,417 2Q T
q r<x|d q"'1<¢c/d qr<z/d
= i | _ -
=2 3 ¢ X anto( Y X 1)+
q"<xd "<z/d a"<xjd ¢"l<z)d
M/ q,l<z] ) q,1<z]
¢#£q€Q q1Q
a#qr

+0(xd” "loglog (xd ™))
— prad" (loglog (wd ")) 4O (vd~"loglog (xd ™).
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Finally,
Zgg(n) — p*ad'(loglog (xd~")*+0((1 —i—Qé(d)):vd“loglog(wd”l)),
"din
and
D=3 Y11=} 31
N N<T QeQ q1eQ ¢, 01¢Q n<i
din din qin g1in a<x  din
g5, 4in
= Y D [o)dge,]+
qeQ q1€Q
<, gtd dgqy<x
(41, ad)=1
' =
1o N ajgatr Y Yogat >N wjdgt DN ald)
2eQ 9€Q  q3eQ qeQ  q1€Q, gy <& geQ, q<T 4 <T, q1eQ)
dg<x g<x,qtd @<= q<w,qld oy #4¢, 114 qld qld
atd ald

= fad " (loglog (zd ")) +0((1 +wp(d) @ Ja~"loglogz/d)).

The lemma is thus proved in all cases.
The following corollary will be useful:
For d < z'* we have

(3) 2 (h(n)—ploglogz)* = O((l +h2(d))ayd_lloglogm),

n<x, d\n
where h(n) is one of the functions wg(n), 2y(n).
LEMMA 3. Let h(n) be one of the functions owg(n), Qg(n). Then
(a) Zh(n)logh(ﬂ-) — pxloglogxlogloglogx 0 (rloglogx),

n<x

(b) Z 1t (n)log*h(n)

N<xT

— f*x(loglogzrlogloglogx): + O(z(loglogx)*logloglog ).
(Here h(n)logh(n) should be treated as zero for h(n) = 0).

Proof of the lemma. Split the rational integers less than  into
three classes:
Z, = {n < x| |h(n)—plogloge | = loglogz},
Zy = {n < | |h(n)—ploglogz | < (loglogz)**},
Zy = {n < | (logloga)™® < | h(n)—ploglogs | < logloga}.
It follows from (3) that for d < &' the number N,(d) of elements
of Z, divisible by d is O((1 LR (d))d " w(loglogz) ), and, similarly, the
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number N,(d) of elements of the set Z, divisible by the number d is
O((1+h2(d))d‘lw(loglogm)flfa). Moreover, the number N, of elements
of Z, is equal to x+0 (z(loglogz)~'").

Now
Zh n)logh(n) Z+Z+2

n<x neZy neZy neZ3

As for every n < x, h(n) = O(logax), thus we have

Z h(n)logh(n) =0 (10glogw Z h(n)) = 0(10g10g:v 2 2 l) +0(rloglogx)

nezy neZy p<x 7'_:)[Znu
Zy
=) (loglogL ) N( ) —|—O(loglogag 2 Nl(p))—H)(wloglogw)
p<xl/° z2<p<a
= O(xloglogux),
because

~ X
D vm=o( Y ~)=ow.
nl2op<a 212 op<a

Similarly, for every neZ; we have h(n) = O(loglogz), thus

Z h(n)logh(n) = 0(10g10g10gx Zh(n))

neZs neZs
=10 (10g10g10ga: ‘; Zn' 1) + O(xlogloglogx)
et 4
O(logloglogw 2 Ng( )+O(10G10g10g30 Z Na(p))qLO(mlogloglogm)
p<al/2 22 p<n

= 0 (x(logloglogx) (loglogz)*?®) = O (zloglog).

For neZ, we have h(n) = ploglogz+0((loglogz)*”) and logh(n)
= logloglogx40(1), thus

Zh(-n)logh(n) = 2(510g10ga3—|—0((logloga:)z"a) (logloglogw+0(1))

neZy neZy
= N,ploglogzlogloglogx -0 (xloglogx)
= frloglogxrlogloglogx+0(xloglogx)
and so (a) is proved.

The proof of (b) follows the same line and so we leave it to the reader.

Proof of Theorem II. Let P, be the set of rational primes, defined
in §2. The argument used in the proof of Theorem I shows that f(n)
= H (wPl(”)) for all n, and not only for square-free n. On the other hand,
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a slight modification of the argument used there shows that, for all =,
fin) < H (Qpl(n)+lc). Taking into account the evaluation log H (n) = nlogn
+0(n) we see that for all n

op, ()10gwp, (1) 40 (wp, (1)) <logf(n) < Qp,(n)1og 2p, (n)+0(Lp (n))

and so part (i) of Theorem IT follows from (1) and Lemma 3, as the Dirichlet
density of P, is equal to 1.
To establish part (ii) one should note only that Lemma 3 implies

Z(logf(n)—;}loglogwlogloglogm)z = 0 (z(loglogx)* (logloglog))

N<E

and so the inequality
logf(n)—iloglogwlogloglogz| = »(x)loglogx(logloglogx)'*

can hold for O(x/r*(x)) = o(x) numbers n < z.

4. Finally we consider the function g(n). We ghall prove the follow-
ing

TuroreEM 1II. Let K be a quadratic field with class-number h = 3,
or with h = 4, and non-cyclic class-group. Then

(1) we have

Zg(fn) = %w(loglogos)—l—()(m(loglogw)2’3) (h = 4);

(ii) For every function r(z) tending to infinity with x, the number of natu-
ral wumbers n<x for which the inequality |g(n)—Cloglogx|=r(x)(loglogz)*
holds is o(x). Here C = 1/9 if h =3, C =1/8 if h =4, a = 1/2 if h = 3,
and a = 5[6 if h = 4.

At first we need some lemmas.

LeMMA 4. If K is a quadratic field with h = 3, and X is one of the
non-principal ideal classes, then g(n) = 1+ [Rp(n)/3], where P is the set
of all primes which are norms of prime ideals from X.

Proof. Let £2p(n) =r. The possible irreducible factors of » have one
of the forms p;q;, p;p;pr and q;q;9x with p;e X, ;¢ X* and so every fac-
torization of » must be of the form

2

n = (” (p%CIk?)) (ﬁ (pr:,- ps]-pt:,-v)) (Ij o quch))

=
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with some non-negative 1, u,». (We consider only the case, when n has
no factor R not divisible by any prime from P, as this restriction does
not affect g(n). Indeed, g(n) = g(n/R).)

The length of this factorization is equal to A-+u-+» and 4, u, v are
related to » by means of the equations

A3u=r, At3v=r,

whence A+u+v =r—u. If now p=»=0,1,2,...,[r/3], A =r—-3pu
then we get exactly 1+4-[r/3] factorizations of »n with different lengths.
(Other values of u are clearly inadmissible).

LEMMA 5. If K is a quadratic field with class-number h = 4 and
non-cyclic class-group H = (K, X, Y, XY), then

g(n) = 14-min(Qp (n), 2p,(n), Lp,(n)),

where

Plz{p[psz,peX}, Pzz{plpsz,peY},
P, ={p|p=Np,peXY}.

Proof. Let = = (pX...p%) (¢ ... ¢t ... 75" R  with p;eP,,
qiePy, ;e Py and p{ R for peP, v P, u P3. As obviously g(n) = g(n/R),
we may assume that R = 1.

The irreducible integers in K have one of the forms p, p,,q, q,, 1,7,
P, v, with p;eX, q;eY and r;eXY. Thus every factorization of n has
the form

A " v e

n = H(n,-v})-ﬂ(q;q;-) 'H(rft;') 'H(ﬁfa?'ff)’

] .

j=1 i=1 i=1 j=1

where p;, pi, p; are prime ideal divisors of p, ... py, and, similarly, g:, g, ¢
are prime ideal divisors of ¢, ... ¢, and t;, r;, T; are prime ideal divisors
of Ty Ty

Clearly 21-+¢ = 20p (n),2u+0 = 20Qp,(n) and 2v+o = 20p (n).
The length of such a factorization is equal to

3
Mtptrte =) Qpn)—ef2.
1=1

As g can assume the values 0, 2,4,..., min(2Q2p (n), 22p,(#), 22p, (1))
only, it follows that

g(n) = 14min(Qp (1), 2p,(n), Lp,(n)),

as asserted.
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LuEMMA 6. Suppose that Q., @y, Qs are sets of rational primes such
that each Q; is the set of all rational primes from a fived ideal class and
assume that they all have the same Dirichlet density o. Let T'(n) = min Qg (n).

Then

ST(’I’L) — pwloglogz+0 (x(loglogx)*?)

N<T

and

T*(n) = p*a(logloga)*+0 (v (loglogx)*).
Proof. Observe first that by (3) we have for d < z'* the relation

Z (!h)@i(-n)~.QQ?.(')L))2 = Zj(.QQi(n)—/iloglog_gm-i—ﬁloglogcc—.QQ].(n))2

n<x, d|n 1&1@1:
<2 Z (2, (n) —ploglogx)* +2 2 (Qq; (n) —plogloga)®
n<w n<zx
din din

= ()((1 +max (25, (d), Qéj(d))md_lloglogoy) ) g

Now let Z, be the set of all natural numbers = less than or equal
to @ for which |Qg (n)—Q, (n)] = (loglogax)*® or [Qg (n)—LQg,(n)]
= (loglogx)*”® holds, and let Z, = [1, #]\Z%,. The estimation just proved
shows that for d < ' the set {n|neZ,,d|n} has at most

0 ((l +1naX(Q(2;1(’l‘l), .Qéz(fn,), Qég(n)) md—l(loglogw)—ua)

elements. Thus in the same way as in the proof of Lemma 3 the estima-
tion

M) < Y 2 (n) = 0()

neZy neZ,

results and by Lemma 2 we have

Nrm)= N Tm)+0(x)

n<x ngzz
s 2 2o, (n)+0 (27: QQl(n)) +0 (x)+0 ((wloglogm)”?’)_
n<x neZ;

The proof of the second part of our lemma follows the same line.

Now we can prove Theorem III. In the case of » = 3 it follows
immediately from Lemma 4, Lemma 2 and (3). In the case of h = 4 it
follows from Lemma 5 and Lemma 6.
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Note that Lemma 6 implies that

Z (7'(n)—pBloglog)* = O (x(loglogx)*?).

n<x
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